Quantum Algorithm for Solving a Quadratic Nonlinear System of Equations
- URL: http://arxiv.org/abs/2112.01655v3
- Date: Sat, 8 Oct 2022 07:44:12 GMT
- Title: Quantum Algorithm for Solving a Quadratic Nonlinear System of Equations
- Authors: Cheng Xue, Xiao-Fan Xu, Yu-Chun Wu, Guo-Ping Guo
- Abstract summary: The complexity of our algorithm is $O(rm polylog(n/epsilon))$, which provides an exponential improvement over the optimal classical algorithm in dimension $n$.
Our algorithm exponentially accelerates the solution of QNSE and has wide applications in all kinds of nonlinear problems.
- Score: 0.22940141855172036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving a quadratic nonlinear system of equations (QNSE) is a fundamental,
but important, task in nonlinear science. We propose an efficient quantum
algorithm for solving $n$-dimensional QNSE. Our algorithm embeds QNSE into a
finite-dimensional system of linear equations using the homotopy perturbation
method and a linearization technique; then we solve the linear equations with a
quantum linear system solver and obtain a state which is $\epsilon$-close to
the normalized exact solution of the QNSE with success probability $\Omega(1)$.
The complexity of our algorithm is $O({\rm polylog}(n/\epsilon))$, which
provides an exponential improvement over the optimal classical algorithm in
dimension $n$, and the dependence on $\epsilon$ is almost optimal. Therefore,
our algorithm exponentially accelerates the solution of QNSE and has wide
applications in all kinds of nonlinear problems, contributing to the research
progress of nonlinear science.
Related papers
- Efficient quantum linear solver algorithm with detailed running costs [0.0]
We introduce a quantum linear solver algorithm combining ideasdiabatic quantum computing with filtering techniques based on quantum signal processing.
Our protocol reduces the cost of quantum linear solvers over state-of-the-art close to an order of magnitude for early implementations.
arXiv Detail & Related papers (2023-05-19T00:07:32Z) - An Inexact Feasible Quantum Interior Point Method for Linearly
Constrained Quadratic Optimization [0.0]
Quantum linear system algorithms (QLSAs) have the potential to speed up algorithms that rely on solving linear systems.
In our work, we propose an Inexact-Feasible QIPM (IF-QIPM) and show its advantage in solving linearly constrained quadratic optimization problems.
arXiv Detail & Related papers (2023-01-13T01:36:13Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - Alternatives to a nonhomogeneous partial differential equation quantum
algorithm [52.77024349608834]
We propose a quantum algorithm for solving nonhomogeneous linear partial differential equations of the form $Apsi(textbfr)=f(textbfr)$.
These achievements enable easier experimental implementation of the quantum algorithm based on nowadays technology.
arXiv Detail & Related papers (2022-05-11T14:29:39Z) - Quantum homotopy perturbation method for nonlinear dissipative ordinary
differential equations [0.25782420501870296]
We propose a quantum algorithm for solving $n$-dimensional nonlinear dissipative ordinary differential equations (ODEs)
Our algorithm provides exponential improvement over the best classical algorithms or previous quantum algorithms in $n$ or $epsilon$.
arXiv Detail & Related papers (2021-11-15T01:34:43Z) - Improving quantum linear system solvers via a gradient descent
perspective [3.0969191504482247]
We revisit quantum linear system solvers from the perspective of convex optimization.
This leads to a considerable constant-factor iteration in the runtime.
We show how the optimal quantum linear system solver of Childs, Kothari, and Somma is related to the gradient descent algorithm.
arXiv Detail & Related papers (2021-09-09T13:16:28Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Sample Complexity Bounds for Two Timescale Value-based Reinforcement
Learning Algorithms [65.09383385484007]
Two timescale approximation (SA) has been widely used in value-based reinforcement learning algorithms.
We study the non-asymptotic convergence rate of two timescale linear and nonlinear TDC and Greedy-GQ algorithms.
arXiv Detail & Related papers (2020-11-10T11:36:30Z) - Efficient quantum algorithm for dissipative nonlinear differential
equations [1.1988695717766686]
We develop a quantum algorithm for dissipative quadratic $n$-dimensional ordinary differential equations.
Our algorithm has complexity $T2 qmathrmpoly(log T, log n, log 1/epsilon)/epsilon$, where $T$ is the evolution time, $epsilon$ is the allowed error, and $q$ measures decay of the solution.
arXiv Detail & Related papers (2020-11-06T04:27:00Z) - Learning nonlinear dynamical systems from a single trajectory [102.60042167341956]
We introduce algorithms for learning nonlinear dynamical systems of the form $x_t+1=sigma(Thetastarx_t)+varepsilon_t$.
We give an algorithm that recovers the weight matrix $Thetastar$ from a single trajectory with optimal sample complexity and linear running time.
arXiv Detail & Related papers (2020-04-30T10:42:48Z) - Second-order Conditional Gradient Sliding [79.66739383117232]
We present the emphSecond-Order Conditional Gradient Sliding (SOCGS) algorithm.
The SOCGS algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations.
It is useful when the feasible region can only be accessed efficiently through a linear optimization oracle.
arXiv Detail & Related papers (2020-02-20T17:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.