Quantum homotopy perturbation method for nonlinear dissipative ordinary
differential equations
- URL: http://arxiv.org/abs/2111.07486v2
- Date: Tue, 21 Dec 2021 14:52:40 GMT
- Title: Quantum homotopy perturbation method for nonlinear dissipative ordinary
differential equations
- Authors: Cheng Xue, Yu-Chun Wu, Guo-Ping Guo
- Abstract summary: We propose a quantum algorithm for solving $n$-dimensional nonlinear dissipative ordinary differential equations (ODEs)
Our algorithm provides exponential improvement over the best classical algorithms or previous quantum algorithms in $n$ or $epsilon$.
- Score: 0.25782420501870296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While quantum computing provides an exponential advantage in solving linear
differential equations, there are relatively few quantum algorithms for solving
nonlinear differential equations. In our work, based on the homotopy
perturbation method, we propose a quantum algorithm for solving $n$-dimensional
nonlinear dissipative ordinary differential equations (ODEs). Our algorithm
first converts the original nonlinear ODEs into the other nonlinear ODEs which
can be embedded into finite-dimensional linear ODEs. Then we solve the embedded
linear ODEs with quantum linear ODEs algorithm and obtain a state
$\epsilon$-close to the normalized exact solution of the original nonlinear
ODEs with success probability $\Omega(1)$. The complexity of our algorithm is
$O(g\eta T{\rm poly}(\log(nT/\epsilon)))$, where $\eta$, $g$ measure the decay
of the solution. Our algorithm provides exponential improvement over the best
classical algorithms or previous quantum algorithms in $n$ or $\epsilon$.
Related papers
- A quantum central path algorithm for linear optimization [5.450016817940232]
We propose a novel quantum algorithm for solving linear optimization problems by quantum-mechanical simulation of the central path.
This approach yields an algorithm for solving linear optimization problems involving $m$ constraints and $n$ variables to $varepsilon$-optimality.
In the standard gate model (i.e., without access to quantum RAM), our algorithm can obtain highly-precise solutions to LO problems using at most $$mathcalO left( sqrtm + n textsfnnz (A) fracR_1
arXiv Detail & Related papers (2023-11-07T13:26:20Z) - Fast quantum algorithm for differential equations [0.5895819801677125]
We present a quantum algorithm with numerical complexity that is polylogarithmic in $N$ but is independent of $kappa$ for a large class of PDEs.
Our algorithm generates a quantum state that enables extracting features of the solution.
arXiv Detail & Related papers (2023-06-20T18:01:07Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
We show that randomization is necessary to obtain a dimension-free dimension-free algorithm.
Our algorithm yields the first deterministic dimension-free algorithm for optimizing ReLU networks.
arXiv Detail & Related papers (2023-02-16T13:57:19Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Alternatives to a nonhomogeneous partial differential equation quantum
algorithm [52.77024349608834]
We propose a quantum algorithm for solving nonhomogeneous linear partial differential equations of the form $Apsi(textbfr)=f(textbfr)$.
These achievements enable easier experimental implementation of the quantum algorithm based on nowadays technology.
arXiv Detail & Related papers (2022-05-11T14:29:39Z) - Quantum Algorithm for Solving a Quadratic Nonlinear System of Equations [0.22940141855172036]
The complexity of our algorithm is $O(rm polylog(n/epsilon))$, which provides an exponential improvement over the optimal classical algorithm in dimension $n$.
Our algorithm exponentially accelerates the solution of QNSE and has wide applications in all kinds of nonlinear problems.
arXiv Detail & Related papers (2021-12-03T00:27:16Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Efficient quantum algorithm for dissipative nonlinear differential
equations [1.1988695717766686]
We develop a quantum algorithm for dissipative quadratic $n$-dimensional ordinary differential equations.
Our algorithm has complexity $T2 qmathrmpoly(log T, log n, log 1/epsilon)/epsilon$, where $T$ is the evolution time, $epsilon$ is the allowed error, and $q$ measures decay of the solution.
arXiv Detail & Related papers (2020-11-06T04:27:00Z) - Learning nonlinear dynamical systems from a single trajectory [102.60042167341956]
We introduce algorithms for learning nonlinear dynamical systems of the form $x_t+1=sigma(Thetastarx_t)+varepsilon_t$.
We give an algorithm that recovers the weight matrix $Thetastar$ from a single trajectory with optimal sample complexity and linear running time.
arXiv Detail & Related papers (2020-04-30T10:42:48Z) - Second-order Conditional Gradient Sliding [79.66739383117232]
We present the emphSecond-Order Conditional Gradient Sliding (SOCGS) algorithm.
The SOCGS algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations.
It is useful when the feasible region can only be accessed efficiently through a linear optimization oracle.
arXiv Detail & Related papers (2020-02-20T17:52:18Z) - High-precision quantum algorithms for partial differential equations [1.4050836886292872]
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm.
We develop quantum algorithms based on adaptive-order finite difference methods and spectral methods.
Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound.
arXiv Detail & Related papers (2020-02-18T20:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.