論文の概要: Mind Your Clever Neighbours: Unsupervised Person Re-identification via
Adaptive Clustering Relationship Modeling
- arxiv url: http://arxiv.org/abs/2112.01839v1
- Date: Fri, 3 Dec 2021 10:55:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-06 14:32:48.230973
- Title: Mind Your Clever Neighbours: Unsupervised Person Re-identification via
Adaptive Clustering Relationship Modeling
- Title(参考訳): Mind Your Clever Neighbours:Adaptive Clustering Relation Modelingによる教師なし人物の再識別
- Authors: Lianjie Jia and Chenyang Yu and Xiehao Ye and Tianyu Yan and Yinjie
Lei and Pingping Zhang
- Abstract要約: 教師なし人物再識別(Re-ID)は、教師付きRe-IDモデルのスケーラビリティ問題を解決する可能性から注目されている。
既存の教師なし手法の多くは反復的なクラスタリング機構を採用しており、教師なしクラスタリングによって生成された擬似ラベルに基づいてネットワークを訓練している。
高品質な擬似ラベルを生成し,クラスタリングエラーの影響を軽減するために,教師なしのRe-IDのための新しいクラスタリング関係モデリングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 19.532602887109668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised person re-identification (Re-ID) attracts increasing attention
due to its potential to resolve the scalability problem of supervised Re-ID
models. Most existing unsupervised methods adopt an iterative clustering
mechanism, where the network was trained based on pseudo labels generated by
unsupervised clustering. However, clustering errors are inevitable. To generate
high-quality pseudo-labels and mitigate the impact of clustering errors, we
propose a novel clustering relationship modeling framework for unsupervised
person Re-ID. Specifically, before clustering, the relation between unlabeled
images is explored based on a graph correlation learning (GCL) module and the
refined features are then used for clustering to generate high-quality
pseudo-labels.Thus, GCL adaptively mines the relationship between samples in a
mini-batch to reduce the impact of abnormal clustering when training. To train
the network more effectively, we further propose a selective contrastive
learning (SCL) method with a selective memory bank update policy. Extensive
experiments demonstrate that our method shows much better results than most
state-of-the-art unsupervised methods on Market1501, DukeMTMC-reID and MSMT17
datasets. We will release the code for model reproduction.
- Abstract(参考訳): 教師なし人物再識別(Re-ID)は、教師付きRe-IDモデルのスケーラビリティ問題を解決する可能性から注目されている。
既存の教師なし手法の多くは、教師なしクラスタリングによって生成された擬似ラベルに基づいてネットワークをトレーニングする反復クラスタリング機構を採用している。
しかし、クラスタリングエラーは避けられない。
高品質な擬似ラベルを生成し,クラスタリングエラーの影響を軽減するために,教師なしのRe-IDのための新しいクラスタリング関係モデリングフレームワークを提案する。
具体的には、クラスタリングの前に、グラフ相関学習(gcl)モジュールに基づいて、ラベルなし画像間の関係を探索し、その洗練された特徴を用いて、高品質な擬似ラベルを生成する。
ネットワークをより効果的に訓練するために,選択的メモリバンク更新ポリシを備えた選択的コントラスト学習(SCL)手法を提案する。
本手法は,Market1501, DukeMTMC-reID, MSMT17データセットにおいて,最先端の教師なし手法よりもはるかに優れた結果を示した。
モデル再現のためのコードをリリースします。
関連論文リスト
- Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
本稿では, クラスタ間マッチングによるモダリティギャップを低減するための, クラスタマッチングに基づく新たな学習フレームワークを提案する。
このような監視信号の下では、クラスタレベルで特徴を協調的に整列させるために、モダリティ・特定・モダリティ・非依存(MSMA)コントラスト学習フレームワークが提案されている。
公開SYSU-MM01とRegDBデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-22T03:27:46Z) - Dynamic Clustering and Cluster Contrastive Learning for Unsupervised
Person Re-identification [29.167783500369442]
教師なしRe-ID手法は、ラベルのないデータから堅牢で差別的な特徴を学習することを目的としている。
本稿では,動的クラスタリングとクラスタコントラスト学習(DCCC)手法を提案する。
提案したDCCCの有効性を検証するために, 広く利用されている複数の公開データセットの実験を行った。
論文 参考訳(メタデータ) (2023-03-13T01:56:53Z) - Implicit Sample Extension for Unsupervised Person Re-Identification [97.46045935897608]
クラスタリングは、時に異なる真のアイデンティティを混ぜ合わせたり、同じアイデンティティを2つ以上のサブクラスタに分割する。
本稿では,クラスタ境界周辺のサポートサンプルを生成するために,Implicit Sample Extension (OurWholeMethod)法を提案する。
提案手法の有効性を実証し,教師なしのRe-IDに対して最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-04-14T11:41:48Z) - Hybrid Contrastive Learning with Cluster Ensemble for Unsupervised
Person Re-identification [8.345677436382193]
教師なしのReIDに対して,Hybrid Contrastive Learning (HCL) アプローチを提案する。
また,Multi-Granularity Clustering Ensembleに基づくHybrid Contrastive Learning (MGCE-HCL)アプローチを提案する。
論文 参考訳(メタデータ) (2022-01-28T09:15:20Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
メタクラスタリング学習(MCL)と呼ばれる「大規模タスクのための小さなデータ」パラダイムを提案する。
MCLは、第1フェーズのトレーニングのためにコンピューティングを節約するためにクラスタリングを介して、未ラベルデータのサブセットを擬似ラベル付けするのみである。
提案手法は計算コストを大幅に削減すると同時に,従来よりも優れた性能を実現している。
論文 参考訳(メタデータ) (2021-11-19T04:10:18Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Hybrid Dynamic Contrast and Probability Distillation for Unsupervised
Person Re-Id [109.1730454118532]
非監督的人物再識別(Re-Id)は、リードワールドビデオ監視システムにおける実践的応用により注目されている。
本稿では,ハイブリッド動的クラスタコントラストと確率蒸留アルゴリズムを提案する。
教師なしRe-Id問題を局所-言語的ダイナミックコントラスト学習と自己教師付き確率蒸留の枠組みに統合する。
論文 参考訳(メタデータ) (2021-09-29T02:56:45Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDECは、共同統計表現学習とクラスタリングのための教師なしのフレームワークである。
実験により,これらの表現を用いることで,様々な画像データセットにまたがる不均衡な画像クラスタリングの結果を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2021-09-11T09:26:52Z) - Unsupervised Person Re-identification via Softened Similarity Learning [122.70472387837542]
人物再識別(re-ID)はコンピュータビジョンにおいて重要なトピックである。
本稿では,ラベル付き情報を必要としないre-IDの教師なし設定について検討する。
2つの画像ベースおよびビデオベースデータセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-04-07T17:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。