Application of Machine Learning in understanding plant virus
pathogenesis: Trends and perspectives on emergence, diagnosis, host-virus
interplay and management
- URL: http://arxiv.org/abs/2112.01998v1
- Date: Fri, 3 Dec 2021 16:25:26 GMT
- Title: Application of Machine Learning in understanding plant virus
pathogenesis: Trends and perspectives on emergence, diagnosis, host-virus
interplay and management
- Authors: Dibyendu Ghosh, Srija Chakraborty, Hariprasad Kodamana, Supriya
Chakraborty
- Abstract summary: Deep learning algorithms further promote the application of machine learning in several field of biology including plant virology.
Considering a significant progress in the application of machine learning in understanding plant virology, this review highlights an introductory note on machine learning.
- Score: 1.949912057689623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inclusion of high throughput technologies in the field of biology has
generated massive amounts of biological data in the recent years. Now,
transforming these huge volumes of data into knowledge is the primary challenge
in computational biology. The traditional methods of data analysis have failed
to carry out the task. Hence, researchers are turning to machine learning based
approaches for the analysis of high-dimensional big data. In machine learning,
once a model is trained with a training dataset, it can be applied on a testing
dataset which is independent. In current times, deep learning algorithms
further promote the application of machine learning in several field of biology
including plant virology. Considering a significant progress in the application
of machine learning in understanding plant virology, this review highlights an
introductory note on machine learning and comprehensively discusses the trends
and prospects of machine learning in diagnosis of viral diseases, understanding
host-virus interplay and emergence of plant viruses.
Related papers
- EndToEndML: An Open-Source End-to-End Pipeline for Machine Learning Applications [0.2826977330147589]
We propose a web-based end-to-end pipeline that is capable of preprocessing, training, evaluating, and visualizing machine learning models.
Our library assists in recognizing, classifying, clustering, and predicting a wide range of multi-modal, multi-sensor datasets.
arXiv Detail & Related papers (2024-03-27T02:24:38Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
Foundations models (FMs) have ushered in a new era in computational biology, especially in the realm of deep learning.
Central to our focus is the application of FMs to specific biological problems, aiming to guide the research community in choosing appropriate FMs for their research needs.
Review analyses challenges and limitations faced by FMs in biology, such as data noise, model explainability, and potential biases.
arXiv Detail & Related papers (2024-02-06T02:29:17Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Recent advancement in Disease Diagnostic using machine learning:
Systematic survey of decades, comparisons, and challenges [0.0]
Pattern recognition and machine learning in the biomedical area promise to increase the precision of disease detection and diagnosis.
This review article examines machine-learning algorithms for detecting diseases, including hepatitis, diabetes, liver disease, dengue fever, and heart disease.
arXiv Detail & Related papers (2023-07-31T16:35:35Z) - Machine Learning for Uncovering Biological Insights in Spatial
Transcriptomics Data [0.0]
Development and homeostasis in multicellular systems require exquisite control over spatial molecular pattern formation and maintenance.
Advances in spatial transcriptomics (ST) have led to rapid development of innovative machine learning (ML) tools.
We summarize major ST analysis goals that ML can help address and current analysis trends.
arXiv Detail & Related papers (2023-03-29T14:22:08Z) - Introduction to Machine Learning for Physicians: A Survival Guide for
Data Deluge [9.152759278163954]
Modern research fields increasingly rely on collecting and analysing massive, often unstructured, and unwieldy datasets.
There is growing interest in machine learning and artificial intelligence applications that can harness this data deluge'
This broad nontechnical overview provides a gentle introduction to machine learning with a specific focus on medical and biological applications.
arXiv Detail & Related papers (2022-12-23T13:08:59Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
Data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces.
The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development.
arXiv Detail & Related papers (2022-10-04T13:48:59Z) - Scientific Machine Learning Benchmarks [0.17205106391379021]
The breakthrough in Deep Learning neural networks has transformed the use of AI and machine learning technologies for the analysis of very large experimental datasets.
Identifying the most appropriate machine learning algorithm for the analysis of any given scientific dataset is still a challenge for scientists.
We describe our approach to the development of scientific machine learning benchmarks and review other approaches to benchmarking scientific machine learning.
arXiv Detail & Related papers (2021-10-25T10:05:11Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.