EndToEndML: An Open-Source End-to-End Pipeline for Machine Learning Applications
- URL: http://arxiv.org/abs/2403.18203v1
- Date: Wed, 27 Mar 2024 02:24:38 GMT
- Title: EndToEndML: An Open-Source End-to-End Pipeline for Machine Learning Applications
- Authors: Nisha Pillai, Athish Ram Das, Moses Ayoola, Ganga Gireesan, Bindu Nanduri, Mahalingam Ramkumar,
- Abstract summary: We propose a web-based end-to-end pipeline that is capable of preprocessing, training, evaluating, and visualizing machine learning models.
Our library assists in recognizing, classifying, clustering, and predicting a wide range of multi-modal, multi-sensor datasets.
- Score: 0.2826977330147589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) techniques are widely applied in the life sciences. However, applying innovative AI techniques to understand and deconvolute biological complexity is hindered by the learning curve for life science scientists to understand and use computing languages. An open-source, user-friendly interface for AI models, that does not require programming skills to analyze complex biological data will be extremely valuable to the bioinformatics community. With easy access to different sequencing technologies and increased interest in different 'omics' studies, the number of biological datasets being generated has increased and analyzing these high-throughput datasets is computationally demanding. The majority of AI libraries today require advanced programming skills as well as machine learning, data preprocessing, and visualization skills. In this research, we propose a web-based end-to-end pipeline that is capable of preprocessing, training, evaluating, and visualizing machine learning (ML) models without manual intervention or coding expertise. By integrating traditional machine learning and deep neural network models with visualizations, our library assists in recognizing, classifying, clustering, and predicting a wide range of multi-modal, multi-sensor datasets, including images, languages, and one-dimensional numerical data, for drug discovery, pathogen classification, and medical diagnostics.
Related papers
- Neuronal Auditory Machine Intelligence (NEURO-AMI) In Perspective [0.0]
We present an overview of a new competing bio-inspired continual learning neural tool Neuronal Auditory Machine Intelligence (Neuro-AMI)
In this report, we present an overview of a new competing bio-inspired continual learning neural tool Neuronal Auditory Machine Intelligence (Neuro-AMI)
arXiv Detail & Related papers (2023-10-14T13:17:58Z) - Unveiling the frontiers of deep learning: innovations shaping diverse
domains [6.951472438774211]
Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data.
DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology.
This paper extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges.
arXiv Detail & Related papers (2023-09-06T04:50:39Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Automated Biodesign Engineering by Abductive Meta-Interpretive Learning [8.788941848262786]
We propose an automated biodesign engineering framework empowered by Abductive Meta-Interpretive Learning ($Meta_Abd$)
In this work, we propose an automated biodesign engineering framework empowered by Abductive Meta-Interpretive Learning ($Meta_Abd$)
arXiv Detail & Related papers (2021-05-17T12:10:26Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Deep Learning in Mining Biological Data [7.834172629639729]
Deep learning (DL) has been successfully applied to solve many complex pattern recognition problems.
This article provides applications of DL to biological sequences, images, and signals data.
It also outlines some open research challenges in mining biological data.
arXiv Detail & Related papers (2020-02-28T23:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.