Total Scale: Face-to-Body Detail Reconstruction from Sparse RGBD Sensors
- URL: http://arxiv.org/abs/2112.02082v1
- Date: Fri, 3 Dec 2021 18:46:49 GMT
- Title: Total Scale: Face-to-Body Detail Reconstruction from Sparse RGBD Sensors
- Authors: Zheng Dong, Ke Xu, Ziheng Duan, Hujun Bao, Weiwei Xu, Rynson W.H. Lau
- Abstract summary: Flat facial surfaces frequently occur in the PIFu-based reconstruction results.
We propose a two-scale PIFu representation to enhance the quality of the reconstructed facial details.
Experiments demonstrate the effectiveness of our approach in vivid facial details and deforming body shapes.
- Score: 52.38220261632204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the 3D human reconstruction methods using Pixel-aligned implicit
function (PIFu) develop fast, we observe that the quality of reconstructed
details is still not satisfactory. Flat facial surfaces frequently occur in the
PIFu-based reconstruction results. To this end, we propose a two-scale PIFu
representation to enhance the quality of the reconstructed facial details.
Specifically, we utilize two MLPs to separately represent the PIFus for the
face and human body. An MLP dedicated to the reconstruction of 3D faces can
increase the network capacity and reduce the difficulty of the reconstruction
of facial details as in the previous one-scale PIFu representation. To remedy
the topology error, we leverage 3 RGBD sensors to capture multiview RGBD data
as the input to the network, a sparse, lightweight capture setting. Since the
depth noise severely influences the reconstruction results, we design a depth
refinement module to reduce the noise of the raw depths under the guidance of
the input RGB images. We also propose an adaptive fusion scheme to fuse the
predicted occupancy field of the body and face to eliminate the discontinuity
artifact at their boundaries. Experiments demonstrate the effectiveness of our
approach in reconstructing vivid facial details and deforming body shapes, and
verify its superiority over state-of-the-art methods.
Related papers
- ANIM: Accurate Neural Implicit Model for Human Reconstruction from a single RGB-D image [40.03212588672639]
ANIM is a novel method that reconstructs arbitrary 3D human shapes from single-view RGB-D images with an unprecedented level of accuracy.
Our model learns geometric details from both pixel-aligned and voxel-aligned features to leverage depth information.
Experiments demonstrate that ANIM outperforms state-of-the-art works that use RGB, surface normals, point cloud or RGB-D data as input.
arXiv Detail & Related papers (2024-03-15T14:45:38Z) - UniSDF: Unifying Neural Representations for High-Fidelity 3D
Reconstruction of Complex Scenes with Reflections [92.38975002642455]
We propose UniSDF, a general purpose 3D reconstruction method that can reconstruct large complex scenes with reflections.
Our method is able to robustly reconstruct complex large-scale scenes with fine details and reflective surfaces.
arXiv Detail & Related papers (2023-12-20T18:59:42Z) - NeuSD: Surface Completion with Multi-View Text-to-Image Diffusion [56.98287481620215]
We present a novel method for 3D surface reconstruction from multiple images where only a part of the object of interest is captured.
Our approach builds on two recent developments: surface reconstruction using neural radiance fields for the reconstruction of the visible parts of the surface, and guidance of pre-trained 2D diffusion models in the form of Score Distillation Sampling (SDS) to complete the shape in unobserved regions in a plausible manner.
arXiv Detail & Related papers (2023-12-07T19:30:55Z) - Pyramid Deep Fusion Network for Two-Hand Reconstruction from RGB-D Images [11.100398985633754]
We propose an end-to-end framework for recovering dense meshes for both hands.
Our framework employs ResNet50 and PointNet++ to derive features from RGB and point cloud.
We also introduce a novel pyramid deep fusion network (PDFNet) to aggregate features at different scales.
arXiv Detail & Related papers (2023-07-12T09:33:21Z) - Improving 2D face recognition via fine-level facial depth generation and
RGB-D complementary feature learning [0.8223798883838329]
We propose a fine-grained facial depth generation network and an improved multimodal complementary feature learning network.
Experiments on the Lock3DFace dataset and the IIIT-D dataset show that the proposed FFDGNet and I MCFLNet can improve the accuracy of RGB-D face recognition.
arXiv Detail & Related papers (2023-05-08T02:33:59Z) - A Hierarchical Representation Network for Accurate and Detailed Face
Reconstruction from In-The-Wild Images [15.40230841242637]
We present a novel hierarchical representation network (HRN) to achieve accurate and detailed face reconstruction from a single image.
Our framework can be extended to a multi-view fashion by considering detail consistency of different views.
Our method outperforms the existing methods in both reconstruction accuracy and visual effects.
arXiv Detail & Related papers (2023-02-28T09:24:36Z) - ReFu: Refine and Fuse the Unobserved View for Detail-Preserving
Single-Image 3D Human Reconstruction [31.782985891629448]
Single-image 3D human reconstruction aims to reconstruct the 3D textured surface of the human body given a single image.
We propose ReFu, a coarse-to-fine approach that refines the projected backside view image and fuses the refined image to predict the final human body.
arXiv Detail & Related papers (2022-11-09T09:14:11Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
We introduce the first method that is able to reconstruct render-ready 3D facial geometry and BRDF from a single "in-the-wild" image.
Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image.
arXiv Detail & Related papers (2021-12-11T11:36:30Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
We harness the power of Generative Adversarial Networks (GANs) and Deep Convolutional Neural Networks (DCNNs) to reconstruct the facial texture and shape from single images.
We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, facial texture reconstruction with high-frequency details.
arXiv Detail & Related papers (2021-05-16T16:35:44Z) - 3D Dense Geometry-Guided Facial Expression Synthesis by Adversarial
Learning [54.24887282693925]
We propose a novel framework to exploit 3D dense (depth and surface normals) information for expression manipulation.
We use an off-the-shelf state-of-the-art 3D reconstruction model to estimate the depth and create a large-scale RGB-Depth dataset.
Our experiments demonstrate that the proposed method outperforms the competitive baseline and existing arts by a large margin.
arXiv Detail & Related papers (2020-09-30T17:12:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.