Normal-guided Detail-Preserving Neural Implicit Function for High-Fidelity 3D Surface Reconstruction
- URL: http://arxiv.org/abs/2406.04861v2
- Date: Tue, 22 Apr 2025 11:40:51 GMT
- Title: Normal-guided Detail-Preserving Neural Implicit Function for High-Fidelity 3D Surface Reconstruction
- Authors: Aarya Patel, Hamid Laga, Ojaswa Sharma,
- Abstract summary: This paper shows that training neural representations with first-order differential properties (surface normals) leads to highly accurate 3D surface reconstruction.<n>Experiments demonstrate that our method achieves state-of-the-art reconstruction accuracy with a minimal number of views.
- Score: 6.4279213810512665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural implicit representations have emerged as a powerful paradigm for 3D reconstruction. However, despite their success, existing methods fail to capture fine geometric details and thin structures, especially in scenarios where only sparse multi-view RGB images of the objects of interest are available. This paper shows that training neural representations with first-order differential properties (surface normals) leads to highly accurate 3D surface reconstruction, even with as few as two RGB images. Using input RGB images, we compute approximate ground-truth surface normals from depth maps produced by an off-the-shelf monocular depth estimator. During training, we directly locate the surface point of the SDF network and supervise its normal with the one estimated from the depth map. Extensive experiments demonstrate that our method achieves state-of-the-art reconstruction accuracy with a minimal number of views, capturing intricate geometric details and thin structures that were previously challenging to capture.
Related papers
- DiMeR: Disentangled Mesh Reconstruction Model [24.07380724530745]
We introduce DiMeR, a novel disentangled dual-stream feed-forward model for sparse-view mesh reconstruction.
We demonstrate robust capabilities across various tasks, including sparse-view reconstruction, single-image-to-3D, and text-to-3D.
arXiv Detail & Related papers (2025-04-24T15:39:20Z) - SR-CurvANN: Advancing 3D Surface Reconstruction through Curvature-Aware Neural Networks [0.0]
SR-CurvANN is a novel method that incorporates neural network-based 2D inpainting to effectively reconstruct 3D surfaces.
We show that SR-CurvANN excels in the shape completion process, filling holes with a remarkable level of realism and precision.
arXiv Detail & Related papers (2024-07-25T09:36:37Z) - ANIM: Accurate Neural Implicit Model for Human Reconstruction from a single RGB-D image [40.03212588672639]
ANIM is a novel method that reconstructs arbitrary 3D human shapes from single-view RGB-D images with an unprecedented level of accuracy.
Our model learns geometric details from both pixel-aligned and voxel-aligned features to leverage depth information.
Experiments demonstrate that ANIM outperforms state-of-the-art works that use RGB, surface normals, point cloud or RGB-D data as input.
arXiv Detail & Related papers (2024-03-15T14:45:38Z) - MonoNPHM: Dynamic Head Reconstruction from Monocular Videos [47.504979561265536]
We present Monocular Neural Parametric Head Models (MonoNPHM) for dynamic 3D head reconstructions from monocular RGB videos.
We constrain predicted color values to be correlated with the underlying geometry such that gradients from RGB effectively influence latent geometry codes during inverse rendering.
arXiv Detail & Related papers (2023-12-11T17:55:05Z) - NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting
Guidance [59.08521048003009]
We propose a neural implicit surface reconstruction pipeline with guidance from 3D Gaussian Splatting to recover highly detailed surfaces.
The advantage of 3D Gaussian Splatting is that it can generate dense point clouds with detailed structure.
We introduce a scale regularizer to pull the centers close to the surface by enforcing the 3D Gaussians to be extremely thin.
arXiv Detail & Related papers (2023-12-01T07:04:47Z) - Weakly-Supervised 3D Reconstruction of Clothed Humans via Normal Maps [1.6462601662291156]
We present a novel deep learning-based approach to the 3D reconstruction of clothed humans using weak supervision via 2D normal maps.
Given a single RGB image or multiview images, our network infers a signed distance function (SDF) discretized on a tetrahedral mesh surrounding the body in a rest pose.
We demonstrate the efficacy of our approach for both network inference and 3D reconstruction.
arXiv Detail & Related papers (2023-11-27T18:06:35Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
The reconstruction of indoor scenes from multi-view RGB images is challenging due to the coexistence of flat and texture-less regions.
Recent methods leverage neural radiance fields aided by predicted surface normal priors to recover the scene geometry.
This work aims to reconstruct high-fidelity surfaces with fine-grained details by addressing the above limitations.
arXiv Detail & Related papers (2023-09-14T12:05:29Z) - DiViNeT: 3D Reconstruction from Disparate Views via Neural Template
Regularization [7.488962492863031]
We present a volume rendering-based neural surface reconstruction method that takes as few as three disparate RGB images as input.
Our key idea is to regularize the reconstruction, which is severely ill-posed and leaving significant gaps between the sparse views.
Our approach achieves the best reconstruction quality among existing methods in the presence of such sparse views.
arXiv Detail & Related papers (2023-06-07T18:05:14Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Recovering Fine Details for Neural Implicit Surface Reconstruction [3.9702081347126943]
We present D-NeuS, a volume rendering neural implicit surface reconstruction method capable to recover fine geometry details.
We impose multi-view feature consistency on the surface points, derived by interpolating SDF zero-crossings from sampled points along rays.
Our method reconstructs high-accuracy surfaces with details, and outperforms the state of the art.
arXiv Detail & Related papers (2022-11-21T10:06:09Z) - GAN2X: Non-Lambertian Inverse Rendering of Image GANs [85.76426471872855]
We present GAN2X, a new method for unsupervised inverse rendering that only uses unpaired images for training.
Unlike previous Shape-from-GAN approaches that mainly focus on 3D shapes, we take the first attempt to also recover non-Lambertian material properties by exploiting the pseudo paired data generated by a GAN.
Experiments demonstrate that GAN2X can accurately decompose 2D images to 3D shape, albedo, and specular properties for different object categories, and achieves the state-of-the-art performance for unsupervised single-view 3D face reconstruction.
arXiv Detail & Related papers (2022-06-18T16:58:49Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - Facial Geometric Detail Recovery via Implicit Representation [147.07961322377685]
We present a robust texture-guided geometric detail recovery approach using only a single in-the-wild facial image.
Our method combines high-quality texture completion with the powerful expressiveness of implicit surfaces.
Our method not only recovers accurate facial details but also decomposes normals, albedos, and shading parts in a self-supervised way.
arXiv Detail & Related papers (2022-03-18T01:42:59Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Deep Implicit Surface Point Prediction Networks [49.286550880464866]
Deep neural representations of 3D shapes as implicit functions have been shown to produce high fidelity models.
This paper presents a novel approach that models such surfaces using a new class of implicit representations called the closest surface-point (CSP) representation.
arXiv Detail & Related papers (2021-06-10T14:31:54Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z) - Geodesic-HOF: 3D Reconstruction Without Cutting Corners [42.4960665928525]
Single-view 3D object reconstruction is a challenging fundamental problem in computer vision.
We learn an image-conditioned mapping function from a canonical sampling domain to a high dimensional space.
We find that this learned geodesic embedding space provides useful information for applications such as unsupervised object decomposition.
arXiv Detail & Related papers (2020-06-14T18:59:06Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.