論文の概要: MoFaNeRF: Morphable Facial Neural Radiance Field
- arxiv url: http://arxiv.org/abs/2112.02308v1
- Date: Sat, 4 Dec 2021 11:25:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-07 18:05:45.676910
- Title: MoFaNeRF: Morphable Facial Neural Radiance Field
- Title(参考訳): MoFaNeRF:形態可能な顔面神経放射場
- Authors: Yiyu Zhuang, Hao Zhu, Xusen Sun, Xun Cao
- Abstract要約: MoFaNeRFは、自由視点画像をベクトル空間で符号化された顔の形、表情、外観にマッピングするパラメトリックモデルである。
識別特異的変調とエンコーダテクスチャを導入することにより、正確な測光の詳細を合成する。
本モデルでは,画像ベースのフィッティング,ランダム生成,顔リギング,顔編集,新しいビューなど,複数のアプリケーションに強い能力を示す。
- 参考スコア(独自算出の注目度): 12.443638713719357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a parametric model that maps free-view images into a vector space
of coded facial shape, expression and appearance using a neural radiance field,
namely Morphable Facial NeRF. Specifically, MoFaNeRF takes the coded facial
shape, expression and appearance along with space coordinate and view direction
as input to an MLP, and outputs the radiance of the space point for
photo-realistic image synthesis. Compared with conventional 3D morphable models
(3DMM), MoFaNeRF shows superiority in directly synthesizing photo-realistic
facial details even for eyes, mouths, and beards. Also, continuous face
morphing can be easily achieved by interpolating the input shape, expression
and appearance codes. By introducing identity-specific modulation and texture
encoder, our model synthesizes accurate photometric details and shows strong
representation ability. Our model shows strong ability on multiple applications
including image-based fitting, random generation, face rigging, face editing,
and novel view synthesis. Experiments show that our method achieves higher
representation ability than previous parametric models, and achieves
competitive performance in several applications. To the best of our knowledge,
our work is the first facial parametric model built upon a neural radiance
field that can be used in fitting, generation and manipulation. Our code and
model are released in https://github.com/zhuhao-nju/mofanerf.
- Abstract(参考訳): 本稿では,自由視点画像から符号化された顔の形状,表情,外観のベクトル空間,すなわちMorphable Facial NeRFを用いてパラメトリックモデルを提案する。
特に、MoFaNeRFは、MLPへの入力として、空間座標及びビュー方向と共に符号化された顔形状、表情、外観を取り込み、光リアル画像合成のための空間点の放射率を出力する。
従来の3Dフォーマブルモデル(3DMM)と比較して、MoFaNeRFは、目、口、ひげでも直接リアルな顔の詳細を合成する上で優れている。
また、入力形状、表現及び外観符号を補間することにより、連続顔形態形成を容易に実現できる。
同一性特異的変調とテクスチャエンコーダを導入することで, 正確な測光細部を合成し, 強い表現能力を示す。
本モデルは,画像ベースフィッティング,ランダム生成,顔リギング,顔編集,新しいビュー合成など,複数のアプリケーションにおいて強力な能力を示す。
実験により,本手法は従来のパラメトリックモデルよりも高い表現能力を示し,いくつかのアプリケーションにおいて競合性能を実現する。
我々の知る限りでは、私たちの研究は、適応、生成、操作に使用できる神経放射場上に構築された最初の顔パラメトリックモデルである。
私たちのコードとモデルはhttps://github.com/zhuhao-nju/mofanerfでリリースされています。
関連論文リスト
- Cafca: High-quality Novel View Synthesis of Expressive Faces from Casual Few-shot Captures [33.463245327698]
人間の顔に先立って,高忠実度表現型顔のモデリングが可能な新しい容積を提示する。
我々は3D Morphable Face Modelを活用して大規模なトレーニングセットを合成し、それぞれのアイデンティティを異なる表現でレンダリングする。
次に、この合成データセットに先立って条件付きニューラルレージアンスフィールドをトレーニングし、推論時に、モデルを1つの被験者の非常にスパースな実画像のセットで微調整する。
論文 参考訳(メタデータ) (2024-10-01T12:24:50Z) - Single-Shot Implicit Morphable Faces with Consistent Texture
Parameterization [91.52882218901627]
本稿では,3次元形態素な顔モデルを構築するための新しい手法を提案する。
本手法は, 最先端手法と比較して, フォトリアリズム, 幾何, 表現精度を向上する。
論文 参考訳(メタデータ) (2023-05-04T17:58:40Z) - One-Shot High-Fidelity Talking-Head Synthesis with Deformable Neural
Radiance Field [81.07651217942679]
トーキングヘッド生成は、ソース画像の識別情報を保持し、駆動画像の動作を模倣する顔を生成することを目的としている。
我々は高忠実かつ自由視点の対話ヘッド合成を実現するHiDe-NeRFを提案する。
論文 参考訳(メタデータ) (2023-04-11T09:47:35Z) - Reconstructing Personalized Semantic Facial NeRF Models From Monocular
Video [27.36067360218281]
本稿では,ニューラルラディアンスフィールドで定義された人間の頭部のセマンティックモデルを提案する。
3D一貫性ヘッドモデルは、不整合と解釈可能な基底の集合で構成され、低次元の表現係数で駆動することができる。
短い単眼のRGB動画を入力として,本手法では10分から20分で被験者の顔のNeRFモデルを構築することができる。
論文 参考訳(メタデータ) (2022-10-12T11:56:52Z) - 3DMM-RF: Convolutional Radiance Fields for 3D Face Modeling [111.98096975078158]
本稿では,1つのパスを1つのパスで合成し,必要なニューラルネットワークのレンダリングサンプルのみを合成するスタイルベースの生成ネットワークを提案する。
このモデルは、任意のポーズと照明の顔画像に正確に適合し、顔の特徴を抽出し、制御可能な条件下で顔を再レンダリングするために使用できることを示す。
論文 参考訳(メタデータ) (2022-09-15T15:28:45Z) - Learning Dynamic Facial Radiance Fields for Few-Shot Talking Head
Synthesis [90.43371339871105]
音声音声音声合成のための動的顔放射場(DFRF)を提案する。
DFRF条件は2次元外観画像上の放射界を呈示し、先行した顔の学習を行う。
実験により、DFRFは40kの反復しか持たない新しいアイデンティティのために、自然で高品質な音声駆動音声ヘッドビデオを合成できることが示された。
論文 参考訳(メタデータ) (2022-07-24T16:46:03Z) - Shape My Face: Registering 3D Face Scans by Surface-to-Surface
Translation [75.59415852802958]
Shape-My-Face (SMF) は、改良されたポイントクラウドエンコーダ、新しい視覚的注意機構、スキップ接続付きグラフ畳み込みデコーダ、特殊口モデルに基づく強力なエンコーダデコーダアーキテクチャである。
私たちのモデルは、トポロジカルにサウンドメッシュを最小限の監視で提供し、より高速なトレーニング時間を提供し、訓練可能なパラメータを桁違いに減らし、ノイズに強く、以前は見られないデータセットに一般化することができます。
論文 参考訳(メタデータ) (2020-12-16T20:02:36Z) - Portrait Neural Radiance Fields from a Single Image [68.66958204066721]
本稿では,単一のポートレートからニューラルラジアンス場(NeRF)を推定する手法を提案する。
体積密度を暗黙的にモデル化する多層パーセプトロン(MLP)の重みを事前に訓練することを提案する。
非知覚面の一般化を改善するため、3次元顔変形モデルによって近似される正準座標空間を訓練する。
本手法は,制御されたキャプチャを用いて定量的に評価し,実画像への一般化を実証し,最先端画像に対して良好な結果を示す。
論文 参考訳(メタデータ) (2020-12-10T18:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。