Characterizing Retweet Bots: The Case of Black Market Accounts
- URL: http://arxiv.org/abs/2112.02366v3
- Date: Wed, 23 Mar 2022 09:53:56 GMT
- Title: Characterizing Retweet Bots: The Case of Black Market Accounts
- Authors: Tu\u{g}rulcan Elmas, Rebekah Overdorf, Karl Aberer
- Abstract summary: We characterize retweet bots that have been uncovered by purchasing retweets from the black market.
We detect whether they are fake or genuine accounts involved in inauthentic activities.
We also analyze their differences from human-controlled accounts.
- Score: 3.0254442724635173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malicious Twitter bots are detrimental to public discourse on social media.
Past studies have looked at spammers, fake followers, and astroturfing bots,
but retweet bots, which artificially inflate content, are not well understood.
In this study, we characterize retweet bots that have been uncovered by
purchasing retweets from the black market. We detect whether they are fake or
genuine accounts involved in inauthentic activities and what they do in order
to appear legitimate. We also analyze their differences from human-controlled
accounts. From our findings on the nature and life-cycle of retweet bots, we
also point out several inconsistencies between the retweet bots used in this
work and bots studied in prior works. Our findings challenge some of the
fundamental assumptions related to bots and in particular how to detect them.
Related papers
- My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection [69.99192868521564]
Social platforms such as Twitter are under siege from a multitude of fraudulent users.
Due to the structure of social networks, the majority of methods are based on the graph neural network(GNN), which is susceptible to attacks.
We propose a node injection-based adversarial attack method designed to deceive bot detection models.
arXiv Detail & Related papers (2023-10-11T03:09:48Z) - BotArtist: Generic approach for bot detection in Twitter via semi-automatic machine learning pipeline [47.61306219245444]
Twitter has become a target for bots and fake accounts, resulting in the spread of false information and manipulation.
This paper introduces a semi-automatic machine learning pipeline (SAMLP) designed to address the challenges correlated with machine learning model development.
We develop a comprehensive bot detection model named BotArtist, based on user profile features.
arXiv Detail & Related papers (2023-05-31T09:12:35Z) - You are a Bot! -- Studying the Development of Bot Accusations on Twitter [1.7626250599622473]
In the absence of ground truth data, researchers may want to tap into the wisdom of the crowd.
Our research presents the first large-scale study of bot accusations on Twitter.
It shows how the term bot became an instrument of dehumanization in social media conversations.
arXiv Detail & Related papers (2023-02-01T16:09:11Z) - Should we agree to disagree about Twitter's bot problem? [1.6317061277457]
We argue how assumptions on bot-likely behavior, the detection approach, and the population inspected can affect the estimation of the percentage of bots on Twitter.
We emphasize the responsibility of platforms to be vigilant, transparent, and unbiased in dealing with threats that may affect their users.
arXiv Detail & Related papers (2022-09-20T21:27:25Z) - Investigating the Validity of Botometer-based Social Bot Studies [0.0]
Social bots are assumed to be automated social media accounts operated by malicious actors with the goal of manipulating public opinion.
Social bot activity has been reported in many different political contexts, including the U.S. presidential elections.
We point out a fundamental theoretical flaw in the widely-used study design for estimating the prevalence of social bots.
arXiv Detail & Related papers (2022-07-23T09:31:30Z) - Manipulating Twitter Through Deletions [64.33261764633504]
Research into influence campaigns on Twitter has mostly relied on identifying malicious activities from tweets obtained via public APIs.
Here, we provide the first exhaustive, large-scale analysis of anomalous deletion patterns involving more than a billion deletions by over 11 million accounts.
We find that a small fraction of accounts delete a large number of tweets daily.
First, limits on tweet volume are circumvented, allowing certain accounts to flood the network with over 26 thousand daily tweets.
Second, coordinated networks of accounts engage in repetitive likes and unlikes of content that is eventually deleted, which can manipulate ranking algorithms.
arXiv Detail & Related papers (2022-03-25T20:07:08Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
This paper focuses on the design of a novel system for identifying Twitter bots based on labeled Twitter data.
Supervised machine learning (ML) framework is adopted using an Extreme Gradient Boosting (XGBoost) algorithm.
Our study also deploys Shapley Additive Explanations (SHAP) for explaining the ML model predictions.
arXiv Detail & Related papers (2021-12-08T14:12:24Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
This study presents a framework whereby several empathetic chatbots are based on understanding users' implied feelings and replying empathetically for multiple dialogue turns.
We call these chatbots CheerBots. CheerBots can be retrieval-based or generative-based and were finetuned by deep reinforcement learning.
To respond in an empathetic way, we develop a simulating agent, a Conceptual Human Model, as aids for CheerBots in training with considerations on changes in user's emotional states in the future to arouse sympathy.
arXiv Detail & Related papers (2021-10-08T07:44:47Z) - BotSpot: Deep Learning Classification of Bot Accounts within Twitter [2.099922236065961]
The openness feature of Twitter allows programs to generate and control Twitter accounts automatically via the Twitter API.
These accounts, which are known as bots, can automatically perform actions such as tweeting, re-tweeting, following, unfollowing, or direct messaging other accounts.
We introduce a novel bot detection approach using deep learning, with the Multi-layer Perceptron Neural Networks and nine features of a bot account.
arXiv Detail & Related papers (2021-09-08T15:17:10Z) - Detection of Novel Social Bots by Ensembles of Specialized Classifiers [60.63582690037839]
Malicious actors create inauthentic social media accounts controlled in part by algorithms, known as social bots, to disseminate misinformation and agitate online discussion.
We show that different types of bots are characterized by different behavioral features.
We propose a new supervised learning method that trains classifiers specialized for each class of bots and combines their decisions through the maximum rule.
arXiv Detail & Related papers (2020-06-11T22:59:59Z) - Twitter Bot Detection Using Bidirectional Long Short-term Memory Neural
Networks and Word Embeddings [6.09170287691728]
This paper develops a recurrent neural model with word embeddings to distinguish Twitter bots from human accounts.
Experiments show that our approach can achieve competitive performance compared with existing state-of-the-art bot detection systems.
arXiv Detail & Related papers (2020-02-03T17:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.