論文の概要: Understanding Dynamic Spatio-Temporal Contexts in Long Short-Term Memory
for Road Traffic Speed Prediction
- arxiv url: http://arxiv.org/abs/2112.02409v2
- Date: Sat, 17 Jun 2023 01:25:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 06:37:21.830450
- Title: Understanding Dynamic Spatio-Temporal Contexts in Long Short-Term Memory
for Road Traffic Speed Prediction
- Title(参考訳): 道路交通速度予測のための長期記憶における動的時空間の理解
- Authors: Won Kyung Lee, Deuk Sin Kwon, So Young Sohn
- Abstract要約: 本研究では,道路間の空間的および時間的依存を考慮した動的局所長短期記憶(LSTM)モデルを提案する。
LSTMモデルは、長い依存性を持つシーケンシャルデータと複雑な非線形機能を扱うことができる。
実験結果から,提案モデルの予測性能は2つの異なるベースライン法と比較して優れていた。
- 参考スコア(独自算出の注目度): 11.92436948211501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable traffic flow prediction is crucial to creating intelligent
transportation systems. Many big-data-based prediction approaches have been
developed but they do not reflect complicated dynamic interactions between
roads considering time and location. In this study, we propose a dynamically
localised long short-term memory (LSTM) model that involves both spatial and
temporal dependence between roads. To do so, we use a localised dynamic spatial
weight matrix along with its dynamic variation. Moreover, the LSTM model can
deal with sequential data with long dependency as well as complex non-linear
features. Empirical results indicated superior prediction performances of the
proposed model compared to two different baseline methods.
- Abstract(参考訳): インテリジェント交通システム構築には信頼性の高い交通流予測が不可欠である。
多くのビッグデータに基づく予測手法が開発されているが、時間と位置を考慮した道路間の複雑な動的相互作用を反映していない。
本研究では,道路間の空間的および時間的依存を考慮した動的局所長短期記憶(LSTM)モデルを提案する。
そのため、局所化された動的空間重み行列とその動的変動を用いる。
さらに、LSTMモデルは、長い依存性を持つシーケンシャルデータと複雑な非線形機能を扱うことができる。
実験の結果,提案モデルの予測性能は2つの異なるベースライン法と比較して良好であった。
関連論文リスト
- Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraosはカオス理論を長期時系列予測に取り入れている。
本研究では,AttraosがPatchTSTと比較して,パラメータの12分の1しか持たない主流データセットやカオスデータセットにおいて,LTSF法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-18T05:35:01Z) - A Dynamic Temporal Self-attention Graph Convolutional Network for
Traffic Prediction [7.23135508361981]
本稿では,隣接する行列をトレーニング可能なアテンションスコア行列とする時間自己アテンショングラフ畳み込みネットワーク(DT-SGN)モデルを提案する。
実世界の交通データセット上での最先端モデル駆動モデルとデータ駆動モデルよりも,本手法の方が優れていることを示す実験を行った。
論文 参考訳(メタデータ) (2023-02-21T03:51:52Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
我々は,SST-GNN(SST-GNN)を簡易に設計し,異なる地区を個別に集約することで依存性を効果的に符号化した。
我々は,本モデルが3つの実環境トラフィックデータセットの最先端モデルよりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2021-03-31T18:28:44Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - An Effective Dynamic Spatio-temporal Framework with Multi-Source
Information for Traffic Prediction [0.22940141855172028]
提案モデルでは,NYC-TaxiデータセットとNYC-Bikeデータセットの予測精度を約3~7%向上する。
実験の結果,提案モデルでは,NYC-TaxiデータセットとNYC-Bikeデータセットの予測精度が約3~7%向上した。
論文 参考訳(メタデータ) (2020-05-08T14:23:52Z) - Forecast Network-Wide Traffic States for Multiple Steps Ahead: A Deep
Learning Approach Considering Dynamic Non-Local Spatial Correlation and
Non-Stationary Temporal Dependency [6.019104024723682]
本研究では,交通予測における2つの問題について検討する。(1)交通リンク間の動的・非局所的な空間的相関を捉え,(2)正確な複数ステップの予測を行うための時間依存性のダイナミクスをモデル化する。
本稿では,これらの問題に対処するため,時空間列列モデル(STSeq2Seq)というディープラーニングフレームワークを提案する。
このモデルは、時間的特徴を捉えるためにシーケンスからシーケンス(seq2seq)アーキテクチャに基づいて構築され、空間情報を集約するためのグラフ畳み込みに依存している。
論文 参考訳(メタデータ) (2020-04-06T03:40:56Z) - TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular
Dynamics [74.43710101147849]
本稿では,動的最適輸送を実現するために,分布間の連続経路を制御するTrjectoryNetを提案する。
単細胞RNAシークエンシング(scRNA-seq)技術から得られたデータにおける細胞動態の研究において、これが特に当てはまるかを示す。
論文 参考訳(メタデータ) (2020-02-09T21:00:38Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。