論文の概要: Predicting Bandwidth Utilization on Network Links Using Machine Learning
- arxiv url: http://arxiv.org/abs/2112.02417v1
- Date: Sat, 4 Dec 2021 19:47:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-07 17:35:31.314334
- Title: Predicting Bandwidth Utilization on Network Links Using Machine Learning
- Title(参考訳): 機械学習を用いたネットワークリンクの帯域利用予測
- Authors: Maxime Labonne, Charalampos Chatzinakis, Alexis Olivereau
- Abstract要約: 本稿では,異なるネットワークリンク間の帯域利用率を高精度に予測する手法を提案する。
シミュレーションネットワークは、各インタフェース上のネットワークリンクのパフォーマンスに関するデータを収集するために作成される。
提案手法は,SDN (Software-Defined Networking) プラットフォームによって管理される反応を用いて,リアルタイムで利用できることを示す。
- 参考スコア(独自算出の注目度): 0.966840768820136
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predicting the bandwidth utilization on network links can be extremely useful
for detecting congestion in order to correct them before they occur. In this
paper, we present a solution to predict the bandwidth utilization between
different network links with a very high accuracy. A simulated network is
created to collect data related to the performance of the network links on
every interface. These data are processed and expanded with feature engineering
in order to create a training set. We evaluate and compare three types of
machine learning algorithms, namely ARIMA (AutoRegressive Integrated Moving
Average), MLP (Multi Layer Perceptron) and LSTM (Long Short-Term Memory), in
order to predict the future bandwidth consumption. The LSTM outperforms ARIMA
and MLP with very accurate predictions, rarely exceeding a 3\% error (40\% for
ARIMA and 20\% for the MLP). We then show that the proposed solution can be
used in real time with a reaction managed by a Software-Defined Networking
(SDN) platform.
- Abstract(参考訳): ネットワークリンクにおける帯域幅利用の予測は、発生前にそれらを修正するために混雑を検出するのに極めて有用である。
本稿では,異なるネットワークリンク間の帯域利用率を非常に高精度に予測する手法を提案する。
シミュレーションネットワークは、各インタフェース上のネットワークリンクのパフォーマンスに関するデータを収集するために作成される。
これらのデータは、トレーニングセットを作成するために、機能エンジニアリングによって処理および拡張されます。
本研究では,将来的な帯域消費を予測するために,有馬(autoregressive integrated moving average),mlp(multi layer perceptron),lstm(long short-term memory)の3種類の機械学習アルゴリズムを評価し,比較した。
LSTM は ARIMA と MLP を非常に正確な予測で上回り、3 % の誤差(ARIMA では 40 % 、MLP では 20 % )を超えることは稀である。
次に、提案したソリューションが、SDN(Software-Defined Networking)プラットフォームによって管理される反応でリアルタイムで利用できることを示す。
関連論文リスト
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - ConvLSTMTransNet: A Hybrid Deep Learning Approach for Internet Traffic Telemetry [0.0]
本稿では,時系列予測のためのハイブリッドディープラーニングモデルConvLSTMTransNetを提案する。
以上の結果から,ConvLSTMTransNetは予測精度において,ベースラインモデルよりも約10%優れていた。
論文 参考訳(メタデータ) (2024-09-20T03:12:57Z) - Switching in the Rain: Predictive Wireless x-haul Network
Reconfiguration [17.891837432766764]
無線x-haulネットワークは、超高速データレートと超低レイテンシをサポートするために、4Gおよび/または5Gベースステーション間のマイクロ波およびミリ波リンクに依存している。
降水は信号の減衰を引き起こし、ネットワーク性能を著しく低下させる。
本研究では,履歴データを用いた予測ネットワーク再構成フレームワークを開発し,各リンクの将来の状態を予測し,瞬時障害に備えてネットワークを前もって準備する。
論文 参考訳(メタデータ) (2022-03-07T13:40:38Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
本稿では,デバイス間のロードバランシングのための新しいデバイス・ツー・デバイス(D2D)支援型符号化学習手法(D2D-CFL)を提案する。
最小処理時間を達成するための最適圧縮率を導出し、収束時間との接続を確立する。
提案手法は,ユーザが継続的にトレーニングデータを生成するリアルタイム協調アプリケーションに有用である。
論文 参考訳(メタデータ) (2021-11-26T18:44:59Z) - A Learning-Based Fast Uplink Grant for Massive IoT via Support Vector
Machines and Long Short-Term Memory [8.864453148536057]
3IoTは、レイテンシを低減し、スマートインターネット・オブ・シング(mMTC)アプリケーションの信頼性を高めるために、高速アップリンク・アロケーション(FUG)を使用する必要性を導入した。
サポートマシンスケジューラ(SVM)に基づく新しいFUGアロケーションを提案する。
第2に、LSTMアーキテクチャは、予測エラーを克服するためにトラフィック予測と補正技術に使用される。
論文 参考訳(メタデータ) (2021-08-02T11:33:02Z) - Throughput-Optimal Topology Design for Cross-Silo Federated Learning [13.922754427601493]
フェデレーション学習は通常、クライアントサーバアーキテクチャを使用し、オーケストレータがリモートクライアントからのモデル更新を反復的に集約し、洗練されたモデルに戻す。
高速アクセスリンクを持つクローズバイデータサイロは、オーケストレータよりも高速に情報を交換できるため、このアプローチはクロスサイロ設定では非効率である可能性がある。
本稿では,最大スループットあるいは保証可能なスループット保証を備えたトポロジを求める実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-23T08:28:29Z) - Scheduling Policy and Power Allocation for Federated Learning in NOMA
Based MEC [21.267954799102874]
Federated Learning(FL)は、データ分散を維持しながらモデルを集中的にトレーニングできる、高度に追求された機械学習技術である。
重み付き和データレートを最大化するために、非直交多重アクセス(NOMA)設定を用いた新しいスケジューリングポリシーと電力割当方式を提案する。
シミュレーションの結果,提案手法は,NOMAベースの無線ネットワークにおいて高いFLテスト精度を実現するのに有効であることがわかった。
論文 参考訳(メタデータ) (2020-06-21T23:07:41Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
機械学習アルゴリズムは、人工知能(AI)モデルをトレーニングするために、ネットワークエッジにデプロイされる。
本稿では,パラメータ(計算負荷)割り当てと帯域幅割り当ての新しい共同設計に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-10T05:52:15Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
本稿では,高精度かつ高効率な人間のポーズ推定について述べる。
我々は、最先端技術よりも精度と効率を両立させる文脈において、この設計選択を再分析する。
本モデルでは,MPII と LSP のデータセットから最先端の結果が得られる。
論文 参考訳(メタデータ) (2020-02-25T18:51:51Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。