Classification of COVID-19 on chest X-Ray images using Deep Learning
model with Histogram Equalization and Lungs Segmentation
- URL: http://arxiv.org/abs/2112.02478v1
- Date: Sun, 5 Dec 2021 05:04:38 GMT
- Title: Classification of COVID-19 on chest X-Ray images using Deep Learning
model with Histogram Equalization and Lungs Segmentation
- Authors: Hitendra Singh Bhadouria, Krishan Kumar, Aman Swaraj, Karan Verma,
Arshpreet Kaur, Shasvat Sharma, Ghanshyam Singh, Ashok Kumar, and Leandro
Melo de Sales
- Abstract summary: We present our study based on deep learning architecture for detecting covid-19 infected lungs using chest X-rays.
Our novel approach combining well-known pre-processing techniques, feature extraction methods, and dataset balancing method, lead us to an outstanding rate of recognition of 98%.
- Score: 1.6019444314820142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background and Objective: Artificial intelligence (AI) methods coupled with
biomedical analysis has a critical role during pandemics as it helps to release
the overwhelming pressure from healthcare systems and physicians. As the
ongoing COVID-19 crisis worsens in countries having dense populations and
inadequate testing kits like Brazil and India, radiological imaging can act as
an important diagnostic tool to accurately classify covid-19 patients and
prescribe the necessary treatment in due time. With this motivation, we present
our study based on deep learning architecture for detecting covid-19 infected
lungs using chest X-rays. Dataset: We collected a total of 2470 images for
three different class labels, namely, healthy lungs, ordinary pneumonia, and
covid-19 infected pneumonia, out of which 470 X-ray images belong to the
covid-19 category. Methods: We first pre-process all the images using histogram
equalization techniques and segment them using U-net architecture. VGG-16
network is then used for feature extraction from the pre-processed images which
is further sampled by SMOTE oversampling technique to achieve a balanced
dataset. Finally, the class-balanced features are classified using a support
vector machine (SVM) classifier with 10-fold cross-validation and the accuracy
is evaluated. Result and Conclusion: Our novel approach combining well-known
pre-processing techniques, feature extraction methods, and dataset balancing
method, lead us to an outstanding rate of recognition of 98% for COVID-19
images over a dataset of 2470 X-ray images. Our model is therefore fit to be
utilized in healthcare facilities for screening purposes.
Related papers
- Detection of COVID19 in Chest X-Ray Images Using Transfer Learning [0.0]
This paper investigates the concept of transfer learning using two of the most well-known VGGNet architectures, namely VGG-16 and VGG-19.
We generated two different datasets to evaluate the performance of the proposed system for the identification of positive Covid-19 instances in a multiclass and binary classification problems.
arXiv Detail & Related papers (2023-04-09T05:02:04Z) - Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
This paper presents a domain knowledge-based pipeline for extracting regions of infection in COVID-19 patients.
The severity of the infection is then classified into different categories using an ensemble of three machine-learning models.
The proposed system was evaluated on a validation dataset in the AI-Enabled Medical Image Analysis Workshop and COVID-19 Diagnosis Competition.
arXiv Detail & Related papers (2023-03-13T13:59:47Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Classification of COVID-19 in Chest X-ray Images Using Fusion of Deep
Features and LightGBM [0.0]
We propose a new technique that is faster and more accurate than the other methods reported in the literature.
The proposed method uses a combination of DenseNet169 and MobileNet Deep Neural Networks to extract the features of the patient's X-ray images.
The method achieved 98.54% and 91.11% accuracies in the two-class (COVID-19, Healthy) and multi-class (COVID-19, Healthy, Pneumonia) classification problems.
arXiv Detail & Related papers (2022-06-09T14:56:24Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Medical-VLBERT: Medical Visual Language BERT for COVID-19 CT Report
Generation With Alternate Learning [70.71564065885542]
We propose to use the medical visual language BERT (Medical-VLBERT) model to identify the abnormality on the COVID-19 scans.
This model adopts an alternate learning strategy with two procedures that are knowledge pretraining and transferring.
For automatic medical report generation on the COVID-19 cases, we constructed a dataset of 368 medical findings in Chinese and 1104 chest CT scans.
arXiv Detail & Related papers (2021-08-11T07:12:57Z) - Deep Metric Learning-based Image Retrieval System for Chest Radiograph
and its Clinical Applications in COVID-19 [12.584626589565522]
Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring.
Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful.
In this work we develop a novel CXR image retrieval model based on deep metric learning.
arXiv Detail & Related papers (2020-11-26T03:16:48Z) - PDCOVIDNet: A Parallel-Dilated Convolutional Neural Network Architecture
for Detecting COVID-19 from Chest X-Ray Images [1.4824891788575418]
COVID-19 pandemic continues to severely undermine the prosperity of the global health system.
The use of chest X-ray images for radiological assessment is one of the essential screening techniques.
We propose a parallel-dilated convolutional neural network based COVID-19 detection system from chest x-ray images.
arXiv Detail & Related papers (2020-07-29T12:28:16Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.