A Novel Sequential Coreset Method for Gradient Descent Algorithms
- URL: http://arxiv.org/abs/2112.02504v1
- Date: Sun, 5 Dec 2021 08:12:16 GMT
- Title: A Novel Sequential Coreset Method for Gradient Descent Algorithms
- Authors: Jiawei Huang, Ruomin Huang, Wenjie Liu, Nikolaos M. Freris and Hu Ding
- Abstract summary: Coreset is a popular data compression technique that has been extensively studied before.
We propose a new framework, termed ''sequential coreset'', which effectively avoids the pseudo-dimension and total sensitivity bound.
Our method is particularly suitable for sparse optimization whence the coreset size can be further reduced to be only poly-logarithmically dependent on the dimension.
- Score: 21.40879052693993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A wide range of optimization problems arising in machine learning can be
solved by gradient descent algorithms, and a central question in this area is
how to efficiently compress a large-scale dataset so as to reduce the
computational complexity. {\em Coreset} is a popular data compression technique
that has been extensively studied before. However, most of existing coreset
methods are problem-dependent and cannot be used as a general tool for a
broader range of applications. A key obstacle is that they often rely on the
pseudo-dimension and total sensitivity bound that can be very high or hard to
obtain. In this paper, based on the ''locality'' property of gradient descent
algorithms, we propose a new framework, termed ''sequential coreset'', which
effectively avoids these obstacles. Moreover, our method is particularly
suitable for sparse optimization whence the coreset size can be further reduced
to be only poly-logarithmically dependent on the dimension. In practice, the
experimental results suggest that our method can save a large amount of running
time compared with the baseline algorithms.
Related papers
- Approximating Metric Magnitude of Point Sets [4.522729058300309]
Metric magnitude is a measure of the "size" of point clouds with many desirable geometric properties.
It has been adapted to various mathematical contexts and recent work suggests that it can enhance machine learning and optimization algorithms.
In this paper, we study the magnitude problem, and show efficient ways of approximating it. We show that it can be cast as a convex optimization problem, but not as a submodular optimization.
The paper describes two new algorithms - an iterative approximation algorithm that converges fast and is accurate, and a subset selection method that makes the computation even faster.
arXiv Detail & Related papers (2024-09-06T17:15:28Z) - Gradient-free neural topology optimization [0.0]
gradient-free algorithms require many more iterations to converge when compared to gradient-based algorithms.
This has made them unviable for topology optimization due to the high computational cost per iteration and high dimensionality of these problems.
We propose a pre-trained neural reparameterization strategy that leads to at least one order of magnitude decrease in iteration count when optimizing the designs in latent space.
arXiv Detail & Related papers (2024-03-07T23:00:49Z) - Refined Coreset Selection: Towards Minimal Coreset Size under Model
Performance Constraints [69.27190330994635]
Coreset selection is powerful in reducing computational costs and accelerating data processing for deep learning algorithms.
We propose an innovative method, which maintains optimization priority order over the model performance and coreset size.
Empirically, extensive experiments confirm its superiority, often yielding better model performance with smaller coreset sizes.
arXiv Detail & Related papers (2023-11-15T03:43:04Z) - Efficient Numerical Algorithm for Large-Scale Damped Natural Gradient
Descent [7.368877979221163]
We propose a new algorithm for efficiently solving the damped Fisher matrix in large-scale scenarios where the number of parameters significantly exceeds the number of available samples.
Our algorithm is based on Cholesky decomposition and is generally applicable. Benchmark results show that the algorithm is significantly faster than existing methods.
arXiv Detail & Related papers (2023-10-26T16:46:13Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Randomized Greedy Algorithms and Composable Coreset for k-Center
Clustering with Outliers [11.546734084378683]
The presence of outliers can significantly increase the computational complexity.
Our idea is inspired by the greedy method, that was developed for solving the ordinary $k$-center clustering problem.
arXiv Detail & Related papers (2023-01-07T09:26:01Z) - A Scalable Finite Difference Method for Deep Reinforcement Learning [0.0]
We investigate a problem with the use of distributed workers in some Deep Reinforcement Learning domains.
We produce a stable, low-bandwidth learning algorithm that achieves 100% usage of all connected CPUs under typical conditions.
arXiv Detail & Related papers (2022-10-14T03:33:53Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Community detection using fast low-cardinality semidefinite programming [94.4878715085334]
We propose a new low-cardinality algorithm that generalizes the local update to maximize a semidefinite relaxation derived from Leiden-k-cut.
This proposed algorithm is scalable, outperforms state-of-the-art algorithms, and outperforms in real-world time with little additional cost.
arXiv Detail & Related papers (2020-12-04T15:46:30Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.