論文の概要: Using Static and Dynamic Malware features to perform Malware Ascription
- arxiv url: http://arxiv.org/abs/2112.02639v1
- Date: Sun, 5 Dec 2021 18:01:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-08 10:53:30.092355
- Title: Using Static and Dynamic Malware features to perform Malware Ascription
- Title(参考訳): 静的および動的マルウェア機能を用いたMalware Ascriptionの実行
- Authors: Jashanpreet Singh Sraw and Keshav Kumar
- Abstract要約: 我々は、悪意のある実行可能ファイルの静的および動的機能を用いて、その家族に基づいてマルウェアを分類する。
Cuckoo Sandboxと機械学習を活用して、この研究を前進させます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Malware ascription is a relatively unexplored area, and it is rather
difficult to attribute malware and detect authorship. In this paper, we employ
various Static and Dynamic features of malicious executables to classify
malware based on their family. We leverage Cuckoo Sandbox and machine learning
to make progress in this research. Post analysis, classification is performed
using various deep learning and machine learning algorithms. Using the features
gathered from VirusTotal (static) and Cuckoo (dynamic) reports, we ran the
vectorized data against Multinomial Naive Bayes, Support Vector Machine, and
Bagging using Decision Trees as the base estimator. For each classifier, we
tuned the hyper-parameters using exhaustive search methods. Our reports can be
extremely useful in malware ascription.
- Abstract(参考訳): マルウェアの徴候は比較的未発見の領域であり、マルウェアの属性と作者の検出は比較的困難である。
本稿では,悪意のある実行可能ファイルの静的および動的特徴を利用して,その家族に基づいてマルウェアを分類する。
Cuckoo Sandboxと機械学習を活用して、この研究を前進させます。
分析後、様々なディープラーニングと機械学習アルゴリズムを用いて分類を行う。
virustotal (static) と cuckoo (dynamic) のレポートから収集した特徴を用いて,マルチノミナルナイーブベイズ,サポートベクターマシン,決定木をベース推定器として袋詰めしたベクトルデータを実行した。
各分類器に対して,全探索法を用いてハイパーパラメータを調整した。
本報告はマルウェア記述に非常に有用である。
関連論文リスト
- MalDICT: Benchmark Datasets on Malware Behaviors, Platforms, Exploitation, and Packers [44.700094741798445]
マルウェア分類に関する既存の研究は、悪意のあるファイルと良性のあるファイルの区別と、家族によるマルウェアの分類という2つのタスクにのみ焦点をあてている。
我々は、マルウェアが提示する行動の分類、マルウェアが実行しているプラットフォーム、マルウェアが悪用する脆弱性、マルウェアが詰め込まれているパッカーの4つのタスクを特定した。
ClarAVyを使ってタグ付けされ、合計で550万近い悪意のあるファイルで構成されています。
論文 参考訳(メタデータ) (2023-10-18T04:36:26Z) - EMBERSim: A Large-Scale Databank for Boosting Similarity Search in
Malware Analysis [48.5877840394508]
近年,定量化によるマルウェア検出から機械学習への移行が進んでいる。
本稿では、EMBERから始まるバイナリファイルの類似性研究の領域における欠陥に対処することを提案する。
我々は、EMBERに類似情報とマルウェアのクラスタグを付与し、類似性空間のさらなる研究を可能にする。
論文 参考訳(メタデータ) (2023-10-03T06:58:45Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - New Datasets for Dynamic Malware Classification [0.0]
悪意のあるソフトウェアであるVrusSamplesとVrusShareの2つの新しい、更新されたデータセットを紹介します。
本稿では、これらの2つのデータセットのバランスとバランスの取れていないバージョンにおけるマルチクラスのマルウェア分類性能について分析する。
その結果,不均衡なVirusSampleデータセットでは,Support Vector Machineが94%のスコアを達成していることがわかった。
最も一般的な勾配向上ベースのモデルのひとつであるXGBoostは、VirusShareデータセットの両バージョンにおいて、90%と80%のスコアを達成している。
論文 参考訳(メタデータ) (2021-11-30T08:31:16Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
悪意のあるアクターが代理モデルを訓練して、インスタンスが誤分類される原因となるバイナリ変異を発見する方法を示す。
そして、変異したマルウェアが、抗ウイルスAPIの代わりとなる被害者モデルに送られ、検出を回避できるかどうかをテストする。
論文 参考訳(メタデータ) (2021-06-15T03:31:02Z) - A Novel Malware Detection Mechanism based on Features Extracted from
Converted Malware Binary Images [0.22843885788439805]
マルウェアのバイナリイメージを使用して、異なる特徴を抽出し、得られたデータセットに異なるML分類器を用いる。
本手法は,抽出した特徴に基づくマルウェアの分類に成功していることを示す。
論文 参考訳(メタデータ) (2021-04-14T06:55:52Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - DAEMON: Dataset-Agnostic Explainable Malware Classification Using
Multi-Stage Feature Mining [3.04585143845864]
マルウェア分類は、新しい悪意のある亜種が属する家族を決定するタスクである。
DAEMONは,データセットに依存しない新しいマルウェア分類ツールである。
論文 参考訳(メタデータ) (2020-08-04T21:57:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。