論文の概要: BERTMap: A BERT-based Ontology Alignment System
- arxiv url: http://arxiv.org/abs/2112.02682v1
- Date: Sun, 5 Dec 2021 21:08:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-07 13:50:42.131178
- Title: BERTMap: A BERT-based Ontology Alignment System
- Title(参考訳): BERTMap: BERTベースのオントロジーアライメントシステム
- Authors: Yuan He, Jiaoyan Chen, Denvar Antonyrajah, Ian Horrocks
- Abstract要約: BERTMapは、教師なし設定と半教師なし設定の両方をサポートすることができる。
BERTMapは、主要なシステムであるLogMapやAMLよりもよく機能する。
- 参考スコア(独自算出の注目度): 24.684912604644865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ontology alignment (a.k.a ontology matching (OM)) plays a critical role in
knowledge integration. Owing to the success of machine learning in many
domains, it has been applied in OM. However, the existing methods, which often
adopt ad-hoc feature engineering or non-contextual word embeddings, have not
yet outperformed rule-based systems especially in an unsupervised setting. In
this paper, we propose a novel OM system named BERTMap which can support both
unsupervised and semi-supervised settings. It first predicts mappings using a
classifier based on fine-tuning the contextual embedding model BERT on text
semantics corpora extracted from ontologies, and then refines the mappings
through extension and repair by utilizing the ontology structure and logic. Our
evaluation with three alignment tasks on biomedical ontologies demonstrates
that BERTMap can often perform better than the leading OM systems LogMap and
AML.
- Abstract(参考訳): オントロジー整合(オントロジー整合(OM))は、知識統合において重要な役割を果たす。
多くのドメインで機械学習が成功したため、OMでは採用されている。
しかし、アドホックな特徴工学や非コンテキストの単語埋め込みをしばしば採用する既存の手法は、特に教師なし環境では、ルールベースのシステムよりは優れていない。
本稿では,教師なし設定と半教師なし設定の両方をサポートするBERTMapという新しいOMシステムを提案する。
まず、オントロジーから抽出したテキストセマンティクスコーパスに基づいて文脈埋め込みモデルBERTを微調整した分類器を用いてマッピングを予測し、オントロジー構造と論理を利用して拡張と修復によってマッピングを洗練する。
バイオメディカルオントロジーにおける3つのアライメントタスクによる評価は、BERTMapが主要なOMシステムであるLogMapやAMLよりもよく動作することを示す。
関連論文リスト
- SegVG: Transferring Object Bounding Box to Segmentation for Visual Grounding [56.079013202051094]
ボックスレベルのアノテーションを信号として転送する新しい手法であるSegVGを提案する。
このアプローチでは,ボックスレベルのレグレッションとピクセルレベルのセグメンテーションの両方の信号としてアノテーションを反復的に利用することができる。
論文 参考訳(メタデータ) (2024-07-03T15:30:45Z) - Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models [3.127265144073288]
本稿では,UPPM法について述べる。
UPPMは、従来のパン光学マッピング技術に動的ラベリング戦略を取り入れている。
その結果、UPPMは、リッチなセマンティックラベルを生成しながら、シーンやセグメントオブジェクトを正確に再構築できることがわかった。
論文 参考訳(メタデータ) (2024-05-03T15:08:39Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - MapperGPT: Large Language Models for Linking and Mapping Entities [1.5340902251924438]
MapperGPTは、大規模言語モデルを用いて、マッピングを後処理のステップとしてレビューし、洗練するアプローチである。
ハイリコール法と組み合わせることで,MapperGPTは精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-10-05T16:43:04Z) - DAMO-NLP at SemEval-2023 Task 2: A Unified Retrieval-augmented System
for Multilingual Named Entity Recognition [94.90258603217008]
MultiCoNER RNum2共有タスクは、細粒度でノイズの多いシナリオにおいて、多言語の名前付きエンティティ認識(NER)に取り組むことを目的としている。
MultiCoNER RNum1の以前のトップシステムは、ナレッジベースまたはガゼッタを組み込んでいる。
細粒度多言語NERのための統一検索拡張システム(U-RaNER)を提案する。
論文 参考訳(メタデータ) (2023-05-05T16:59:26Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
不完全なラベルを持つマルチラベル認識(MLR)は非常に難しい。
最近の研究は、視覚言語モデルであるCLIPにおける画像とラベルの対応を探り、不十分なアノテーションを補うことを目指している。
我々は,MLRにおけるラベル管理の欠如を,構造化されたセマンティクスを導出することにより,不完全なラベルで修復することを提唱する。
論文 参考訳(メタデータ) (2023-03-23T12:39:20Z) - Truveta Mapper: A Zero-shot Ontology Alignment Framework [3.5284865194805106]
教師なしオントロジーマッチング(OM)やオントロジーアライメント(OA)に対する新しい視点の提案
提案するフレームワークであるTruveta Mapper (TM)は、マルチタスクのシーケンス・ツー・シーケンス・トランスフォーマーモデルを利用して、ゼロショット、統一、エンドツーエンドの方法で複数のアライメントを実行する。
TMは、公開コーパステキストと内部オントロジデータのみを事前訓練し、微調整する。
論文 参考訳(メタデータ) (2023-01-24T00:32:56Z) - Contextual Semantic Embeddings for Ontology Subsumption Prediction [37.61925808225345]
本稿では,Web Ontology (OWL) のクラスに BERTSubs というコンテキスト埋め込みの新たな予測手法を提案する。
これは、事前訓練された言語モデルBERTを利用してクラスの埋め込みを計算し、クラスコンテキストと論理的存在制約を組み込むためにカスタマイズされたテンプレートを提案する。
論文 参考訳(メタデータ) (2022-02-20T11:14:04Z) - PRASEMap: A Probabilistic Reasoning and Semantic Embedding based
Knowledge Graph Alignment System [22.6762874669173]
PRASEMapは教師なしのKGアライメントシステムで、確率推論(PR)とセマンティック埋め込み(SE)の両方の手法でマッピングを反復的に計算する。
PRASEMapは、SEモジュールとして様々な埋め込みベースのKGアライメントアプローチをサポートし、簡単なヒューマンコンピュータインタラクションを可能にする。
このデモでは、ユーザフレンドリーなインターフェースを備えたスタンドアロンのWebアプリケーションを通じて、これらの機能を紹介している。
論文 参考訳(メタデータ) (2021-06-16T14:06:09Z) - Low-Resource Task-Oriented Semantic Parsing via Intrinsic Modeling [65.51280121472146]
私たちは本質的にオントロジーラベルについて知っているものを利用して、効率的なセマンティック解析モデルを構築します。
我々のモデルはTOPv2から派生した低リソースのベンチマークを用いて高効率である。
論文 参考訳(メタデータ) (2021-04-15T04:01:02Z) - OpenStreetMap: Challenges and Opportunities in Machine Learning and
Remote Sensing [66.23463054467653]
本稿では,OpenStreetMapデータの改良と利用のための機械学習に基づく最近の手法について述べる。
私たちは、OSMがリモートセンシングデータの解釈方法を変え、機械学習とのシナジーが参加型マップ作成をスケールできると考えている。
論文 参考訳(メタデータ) (2020-07-13T09:58:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。