Causality and dimensionality in geometric scattering
- URL: http://arxiv.org/abs/2112.02733v2
- Date: Mon, 4 Apr 2022 23:02:19 GMT
- Title: Causality and dimensionality in geometric scattering
- Authors: Silas R. Beane and Roland C. Farrell
- Abstract summary: The scattering matrix describes low-energy, non-relativistic scattering of spin-1/2 fermions interacting via finite-range potentials.
The effect of spatial dimensionality is investigated by considering scattering in two and three dimensions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scattering matrix which describes low-energy, non-relativistic scattering
of spin-1/2 fermions interacting via finite-range potentials can be obtained
from a geometric action principle in which space and time do not appear
explicitly arXiv:2011.01278. In the case of zero-range forces, causality leads
to constraints on scattering trajectories in the geometric picture. The effect
of spatial dimensionality is also investigated by considering scattering in two
and three dimensions. In the geometric formulation it is found that
dimensionality is encoded in the phase of the harmonic potential that appears
in the geometric action.
Related papers
- Generally covariant geometric momentum and geometric potential for a Dirac fermion on a two-dimensional hypersurface [0.0]
In the context of multi-component quantum states, geometric momentum should be rewritten as generally covariant geometric momentum.
For a Dirac fermion constrained on a two-dimensional hypersurface, we show that on the pseudosphere and the helical surface there exist no curvature-induced geometric potentials.
arXiv Detail & Related papers (2024-03-24T02:20:03Z) - Quantum Scattering of Spinless Particles in Riemannian Manifolds [0.0]
Quantum mechanics is sensitive to the geometry of the underlying space.
We present a framework for quantum scattering of a non-relativistic particle confined to a two-dimensional space.
arXiv Detail & Related papers (2024-02-16T10:50:50Z) - Dynamical chaos in nonlinear Schr\"odinger models with subquadratic
power nonlinearity [137.6408511310322]
We deal with a class of nonlinear Schr"odinger lattices with random potential and subquadratic power nonlinearity.
We show that the spreading process is subdiffusive and has complex microscopic organization.
The limit of quadratic power nonlinearity is also discussed and shown to result in a delocalization border.
arXiv Detail & Related papers (2023-01-20T16:45:36Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Exceptional points and pseudo-Hermiticity in real potential scattering [0.0]
We study a class of scattering setups modeled by real potentials in two dimensions.
Our results reveal the relevance of the concepts of pseudo-Hermitian operator and exceptional point in the standard quantum mechanics of closed systems.
arXiv Detail & Related papers (2021-10-12T10:51:26Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
A complete recipe of measure-preserving diffusions in Euclidean space was recently derived unifying several MCMC algorithms into a single framework.
We develop a geometric theory that improves and generalises this construction to any manifold.
arXiv Detail & Related papers (2021-05-06T17:36:55Z) - Rectification induced by geometry in two-dimensional quantum spin
lattices [58.720142291102135]
We address the role of geometrical asymmetry in the occurrence of spin rectification in two-dimensional quantum spin chains.
We show that geometrical asymmetry, along with inhomogeneous magnetic fields, can induce spin current rectification even in the XX model.
arXiv Detail & Related papers (2020-12-02T18:10:02Z) - Geometry and entanglement in the scattering matrix [0.0]
A formulation of nucleon-nucleon scattering is developed in which the S-matrix is the fundamental object.
The trajectory on the flat torus boundary can be explicitly constructed from a bulk trajectory with a quantifiable error.
arXiv Detail & Related papers (2020-11-02T19:49:53Z) - Geometric Quantum Information Structure in Quantum Fields and their
Lattice Simulation [0.0]
An upper limit to distillable entanglement has an exponential decay defined by a geometric decay constant.
When regulated at short distances with a spatial lattice, this entanglement abruptly vanishes beyond a dimensionless separation.
We highlight potential impacts of the distillable entanglement structure on effective field theories, lattice QCD calculations and future quantum simulations.
arXiv Detail & Related papers (2020-08-09T04:26:49Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.