Learning-based Measurement Scheduling for Loosely-Coupled Cooperative
Localization
- URL: http://arxiv.org/abs/2112.02843v1
- Date: Mon, 6 Dec 2021 08:06:29 GMT
- Title: Learning-based Measurement Scheduling for Loosely-Coupled Cooperative
Localization
- Authors: Jianan Zhu and Solmaz S. Kia
- Abstract summary: In cooperative localization, communicating mobile agents use inter-agent relative measurements to improve their dead-reckoning-based global localization.
Measurement scheduling enables an agent to decide which subset of available inter-agent relative measurements it should process when its computational resources are limited.
This paper proposes a measurement scheduling for CL that follows the sequential computation approach but reduces the communication and cost by using a neural network-based surrogate model as a proxy for the SG's merit function.
- Score: 3.616948583169635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In cooperative localization, communicating mobile agents use inter-agent
relative measurements to improve their dead-reckoning-based global
localization. Measurement scheduling enables an agent to decide which subset of
available inter-agent relative measurements it should process when its
computational resources are limited. Optimal measurement scheduling is an
NP-hard combinatorial optimization problem. The so-called sequential greedy
(SG) algorithm is a popular suboptimal polynomial-time solution for this
problem. However, the merit function evaluation for the SG algorithms requires
access to the state estimate vector and error covariance matrix of all the
landmark agents (teammates that an agent can take measurements from). This
paper proposes a measurement scheduling for CL that follows the SG approach but
reduces the communication and computation cost by using a neural network-based
surrogate model as a proxy for the SG algorithm's merit function. The
significance of this model is that it is driven by local information and only a
scalar metadata from the landmark agents. This solution addresses the time and
memory complexity issues of running the SG algorithm in three ways: (a)
reducing the inter-agent communication message size, (b) decreasing the
complexity of function evaluations by using a simpler surrogate (proxy)
function, (c) reducing the required memory size.Simulations demonstrate our
results.
Related papers
- Asynchronous Local Computations in Distributed Bayesian Learning [8.516532665507835]
We propose gossip-based communication to leverage fast computations and reduce communication overhead simultaneously.
We observe faster initial convergence and improved performance accuracy, especially in the low data range.
We achieve on average 78% and over 90% classification accuracy respectively on the Gamma Telescope and mHealth data sets from the UCI ML repository.
arXiv Detail & Related papers (2023-11-06T20:11:41Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Acceleration in Distributed Optimization Under Similarity [72.54787082152278]
We study distributed (strongly convex) optimization problems over a network of agents, with no centralized nodes.
An $varepsilon$-solution is achieved in $tildemathcalrhoObig(sqrtfracbeta/mu (1-)log1/varepsilonbig)$ number of communications steps.
This rate matches (up to poly-log factors) for the first time lower complexity communication bounds of distributed gossip-algorithms applied to the class of problems of interest.
arXiv Detail & Related papers (2021-10-24T04:03:00Z) - DESTRESS: Computation-Optimal and Communication-Efficient Decentralized
Nonconvex Finite-Sum Optimization [43.31016937305845]
Internet-of-things, networked sensing, autonomous systems and federated learning call for decentralized algorithms for finite-sum optimizations.
We develop DEcentralized STochastic REcurSive methodDESTRESS for non finite-sum optimization.
Detailed theoretical and numerical comparisons show that DESTRESS improves upon prior decentralized algorithms.
arXiv Detail & Related papers (2021-10-04T03:17:41Z) - Dimension-Free Rates for Natural Policy Gradient in Multi-Agent
Reinforcement Learning [22.310861786709538]
We propose a scalable algorithm for cooperative multi-agent reinforcement learning.
We show that our algorithm converges to the globally optimal policy with a dimension-free statistical and computational complexity.
arXiv Detail & Related papers (2021-09-23T23:38:15Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
We study the connection between network topology and convergence rates for different algorithms on a real world problem of sensor localization.
We also show interesting connections between ADMM and lifted Markov chains besides providing an explicitly characterization of its convergence.
arXiv Detail & Related papers (2020-09-05T21:44:39Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Multi-Agent Reinforcement Learning in Stochastic Networked Systems [30.78949372661673]
We study multi-agent reinforcement learning (MARL) in a network of agents.
The objective is to find localized policies that maximize the (discounted) global reward.
arXiv Detail & Related papers (2020-06-11T16:08:16Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.