Asynchronous Local Computations in Distributed Bayesian Learning
- URL: http://arxiv.org/abs/2311.03496v2
- Date: Sun, 7 Jan 2024 05:02:16 GMT
- Title: Asynchronous Local Computations in Distributed Bayesian Learning
- Authors: Kinjal Bhar, He Bai, Jemin George, Carl Busart
- Abstract summary: We propose gossip-based communication to leverage fast computations and reduce communication overhead simultaneously.
We observe faster initial convergence and improved performance accuracy, especially in the low data range.
We achieve on average 78% and over 90% classification accuracy respectively on the Gamma Telescope and mHealth data sets from the UCI ML repository.
- Score: 8.516532665507835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the expanding scope of machine learning (ML) to the fields of sensor
networking, cooperative robotics and many other multi-agent systems,
distributed deployment of inference algorithms has received a lot of attention.
These algorithms involve collaboratively learning unknown parameters from
dispersed data collected by multiple agents. There are two competing aspects in
such algorithms, namely, intra-agent computation and inter-agent communication.
Traditionally, algorithms are designed to perform both synchronously. However,
certain circumstances need frugal use of communication channels as they are
either unreliable, time-consuming, or resource-expensive. In this paper, we
propose gossip-based asynchronous communication to leverage fast computations
and reduce communication overhead simultaneously. We analyze the effects of
multiple (local) intra-agent computations by the active agents between
successive inter-agent communications. For local computations, Bayesian
sampling via unadjusted Langevin algorithm (ULA) MCMC is utilized. The
communication is assumed to be over a connected graph (e.g., as in
decentralized learning), however, the results can be extended to coordinated
communication where there is a central server (e.g., federated learning). We
theoretically quantify the convergence rates in the process. To demonstrate the
efficacy of the proposed algorithm, we present simulations on a toy problem as
well as on real world data sets to train ML models to perform classification
tasks. We observe faster initial convergence and improved performance accuracy,
especially in the low data range. We achieve on average 78% and over 90%
classification accuracy respectively on the Gamma Telescope and mHealth data
sets from the UCI ML repository.
Related papers
- Communication-Efficient Decentralized Federated Learning via One-Bit
Compressive Sensing [52.402550431781805]
Decentralized federated learning (DFL) has gained popularity due to its practicality across various applications.
Compared to the centralized version, training a shared model among a large number of nodes in DFL is more challenging.
We develop a novel algorithm based on the framework of the inexact alternating direction method (iADM)
arXiv Detail & Related papers (2023-08-31T12:22:40Z) - DIGEST: Fast and Communication Efficient Decentralized Learning with Local Updates [4.3707341422218215]
Two widely considered decentralized learning algorithms are Gossip and random walk-based learning.
We design a fast and communication-efficient asynchronous decentralized learning mechanism DIGEST.
We evaluate the performance of single- and multi-stream DIGEST for logistic regression and a deep neural network ResNet20.
arXiv Detail & Related papers (2023-07-14T22:58:20Z) - A Newton-type algorithm for federated learning based on incremental
Hessian eigenvector sharing [5.404315085380945]
We present an original communication-constrained Newton-type (NT) algorithm designed to accelerate Federated Learning (FL)
The proposed solution is thoroughly validated on real datasets.
arXiv Detail & Related papers (2022-02-11T17:52:56Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
We will mainly focus on collaborative training across wireless devices.
Many distributed optimization algorithms have been developed over the last decades.
They provide data locality; that is, a joint model can be trained collaboratively while the data available at each participating device remains local.
arXiv Detail & Related papers (2021-12-07T20:15:39Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - A Low Complexity Decentralized Neural Net with Centralized Equivalence
using Layer-wise Learning [49.15799302636519]
We design a low complexity decentralized learning algorithm to train a recently proposed large neural network in distributed processing nodes (workers)
In our setup, the training data is distributed among the workers but is not shared in the training process due to privacy and security concerns.
We show that it is possible to achieve equivalent learning performance as if the data is available in a single place.
arXiv Detail & Related papers (2020-09-29T13:08:12Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
We study the connection between network topology and convergence rates for different algorithms on a real world problem of sensor localization.
We also show interesting connections between ADMM and lifted Markov chains besides providing an explicitly characterization of its convergence.
arXiv Detail & Related papers (2020-09-05T21:44:39Z) - Communication-Efficient Distributed Deep Learning: A Comprehensive
Survey [22.42450750097714]
We provide a comprehensive survey of the communication-efficient distributed training algorithms.
We first propose a taxonomy of data-parallel distributed training algorithms.
We then investigate state-of-the-art studies that address problems in these four dimensions.
arXiv Detail & Related papers (2020-03-10T05:42:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.