論文の概要: Cross-Modality Attentive Feature Fusion for Object Detection in
Multispectral Remote Sensing Imagery
- arxiv url: http://arxiv.org/abs/2112.02991v1
- Date: Mon, 6 Dec 2021 13:12:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-07 22:23:33.978623
- Title: Cross-Modality Attentive Feature Fusion for Object Detection in
Multispectral Remote Sensing Imagery
- Title(参考訳): マルチスペクトルリモートセンシング画像における物体検出のためのクロスモーダル・アテンテーティブ・フィーチャーフュージョン
- Authors: Qingyun Fang, Zhaokui Wang
- Abstract要約: マルチスペクトルリモートセンシング画像ペアの相補的な情報を融合するクロスモダリティは、検出アルゴリズムの知覚能力を向上させることができる。
本稿では,共通モダリティと差分モダリティを併用した,新規で軽量なマルチスペクトル特徴融合法を提案する。
提案手法は,最先端の性能を低コストで実現することができる。
- 参考スコア(独自算出の注目度): 0.6853165736531939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-modality fusing complementary information of multispectral remote
sensing image pairs can improve the perception ability of detection algorithms,
making them more robust and reliable for a wider range of applications, such as
nighttime detection. Compared with prior methods, we think different features
should be processed specifically, the modality-specific features should be
retained and enhanced, while the modality-shared features should be
cherry-picked from the RGB and thermal IR modalities. Following this idea, a
novel and lightweight multispectral feature fusion approach with joint
common-modality and differential-modality attentions are proposed, named
Cross-Modality Attentive Feature Fusion (CMAFF). Given the intermediate feature
maps of RGB and IR images, our module parallel infers attention maps from two
separate modalities, common- and differential-modality, then the attention maps
are multiplied to the input feature map respectively for adaptive feature
enhancement or selection. Extensive experiments demonstrate that our proposed
approach can achieve the state-of-the-art performance at a low computation
cost.
- Abstract(参考訳): マルチスペクトルリモートセンシング画像ペアの相補的な情報を融合するクロスモダリティは、検出アルゴリズムの知覚能力を向上し、夜間検出など幅広いアプリケーションに対してより堅牢で信頼性の高いものにすることができる。
従来の手法と比較して、異なる特徴を具体的に処理し、モダリティ特異的な特徴を維持・強化し、一方、モダリティ共有特徴をRGBおよび熱赤外モードからチェリーピックするべきである。
この考え方に従い、共通モダリティと微分モダリティを併用した新しい軽量マルチスペクトル特徴融合アプローチが提案され、クロスモダリティ注意特徴融合 (cmaff) と命名された。
rgb画像とir画像の中間特徴マップを考えると、モジュール並列は2つの異なるモダリティ(共通モダリティと微分モダリティ)からアテンションマップを推論し、アテンションマップをそれぞれ入力特徴マップに乗じて適応特徴強調や選択を行う。
広範な実験により,提案手法が低計算コストで最先端の性能を実現することを実証した。
関連論文リスト
- A Semantic-Aware and Multi-Guided Network for Infrared-Visible Image Fusion [41.34335755315773]
マルチモダリティ画像融合は、2つのソース画像から特定のモダリティ情報と共有モダリティ情報を融合することを目的としている。
本稿では,3分岐エンコーダデコーダアーキテクチャと,それに対応する融合層を融合戦略として提案する。
可視・近赤外画像融合および医用画像融合タスクにおける最先端手法と比較して,本手法は競争力のある結果を得た。
論文 参考訳(メタデータ) (2024-06-11T09:32:40Z) - From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
我々は、テキスト記述から高レベルなセマンティクスを活用し、赤外線と可視画像のセマンティクスを統合するテキスト誘導多モード画像融合法を提案する。
本手法は,視覚的に優れた融合結果を生成するだけでなく,既存の手法よりも高い検出mAPを達成し,最先端の結果を得る。
論文 参考訳(メタデータ) (2023-12-31T08:13:47Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
マルチモーダル融合は、複数のモーダルからのデータを融合することで精度を高めることが決定されている。
早期に異なるチャネル間の関係をマッピングするための新しいマルチモーダル融合戦略を提案する。
本手法は,中期・後期の手法とは対照的に,早期の融合に対処することにより,既存の手法と比較して,競争力や性能に優れる。
論文 参考訳(メタデータ) (2023-10-21T00:56:11Z) - ICAFusion: Iterative Cross-Attention Guided Feature Fusion for
Multispectral Object Detection [25.66305300362193]
大域的特徴相互作用をモデル化するために、二重対向変換器の新たな特徴融合フレームワークを提案する。
このフレームワークは、クエリ誘導のクロスアテンション機構を通じて、オブジェクトの特徴の識別性を高める。
提案手法は,様々なシナリオに適した性能と高速な推論を実現する。
論文 参考訳(メタデータ) (2023-08-15T00:02:10Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
この研究は、野生の隠れた物体の発見と位置決めに焦点をあて、無人のシステムに役立てる。
経験的分析により、赤外線と可視画像融合(IVIF)は、難しい物体の発見を可能にする。
マルチモーダル・サリエント・オブジェクト検出(SOD)は、画像内の物体の正確な空間的位置を正確に記述する。
論文 参考訳(メタデータ) (2023-05-17T06:48:35Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
本稿では,CDDFuse(Relationed-Driven Feature Decomposition Fusion)ネットワークを提案する。
近赤外可視画像融合や医用画像融合など,複数の融合タスクにおいてCDDFuseが有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-11-26T02:40:28Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - Transformer-based Network for RGB-D Saliency Detection [82.6665619584628]
RGB-Dサリエンシ検出の鍵は、2つのモードにわたる複数のスケールで情報を完全なマイニングとヒューズすることである。
コンバータは機能融合と機能拡張の両面において高い有効性を示す一様操作であることを示す。
提案するネットワークは,最先端のRGB-D値検出手法に対して良好に動作する。
論文 参考訳(メタデータ) (2021-12-01T15:53:58Z) - RGB-D Salient Object Detection with Cross-Modality Modulation and
Selection [126.4462739820643]
本稿では, RGB-D Salient Object Detection (SOD) において, モジュール間相補性を段階的に統合し, 改良する有効な方法を提案する。
提案するネットワークは,1)RGB画像とそれに対応する深度マップからの補完情報を効果的に統合する方法,および2)より精度の高い特徴を適応的に選択する方法の2つの課題を主に解決する。
論文 参考訳(メタデータ) (2020-07-14T14:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。