Characterization of an atom interferometer in the quasi-Bragg regime
- URL: http://arxiv.org/abs/2112.03086v3
- Date: Thu, 3 Mar 2022 08:09:03 GMT
- Title: Characterization of an atom interferometer in the quasi-Bragg regime
- Authors: Ashley B\'eguin, Tangui Rodzinka, Jacques Vigu\'e, Baptiste Allard,
Alexandre Gauguet
- Abstract summary: We focus on an intermediate regime between the Raman-Nath and the Bragg regimes, the so-called quasi-Bragg regime.
The experimental results are in a good agreement with a full numerical integration of the Schr"odinger equation.
- Score: 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide a comprehensive study of ultra-cold atom diffraction by an optical
lattice. We focus on an intermediate regime between the Raman-Nath and the
Bragg regimes, the so-called quasi-Bragg regime. The experimental results are
in a good agreement with a full numerical integration of the Schr\"odinger
equation. We investigate the long pulse regime limited by a strong velocity
selection and the short pulse regime limited by non-adiabatic losses. For each
of these regimes, we estimate the multi-port features of the Bragg
interferometers. Finally, we discuss the best compromise between these two
regimes, considering the diffraction phase shift and the existence of parasitic
interferometers.
Related papers
- Phase sensitivity of spatially broadband high-gain SU(1,1)
interferometers [0.0]
We present a theoretical description of spatially multimode SU (1,1) interferometers operating at low and high parametric gains.
Our approach is based on a step-by-step solution of a system of integro-differential equations for each nonlinear interaction region.
We investigate plane-wave and Gaussian pumping and show that for any parametric gain, there exists a region of phases for which the phase sensitivity surpasses the standard shot-noise scaling.
arXiv Detail & Related papers (2023-07-04T13:51:31Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - The quantum and classical field scattered on a single two-level system [0.0]
In many problems, the scattering amplitudes of weak coherent pulse are almost equivalent to the ones of single propagating photon.
We thoroughly compare the scattering of: (i) short microwave coherent pulse from rf generator and (ii) vacuum-photon coherent superposition from the two-level Emitter.
arXiv Detail & Related papers (2023-02-27T13:44:50Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Multimode Trapped Interferometer with Ideal Bose-Einstein Condensates [2.0290671957380604]
We experimentally demonstrate a multi-mode interferometer comprising a Bose-Einstein condensate of $39$K atoms trapped in a harmonic potential.
We find that the relative amplitudes of the momentum components at the interferometer output are sensitive to external forces.
arXiv Detail & Related papers (2021-06-14T06:33:17Z) - GHZ-like states in the Qubit-Qudit Rabi Model [21.370076704793373]
We study a Rabi type Hamiltonian system in which a qubit and a d-level quantum system (qudit) are coupled through a common resonator.
The analysis show that the presence of the multilevels of the qudit effectively enhance the qubit-qudit interaction.
arXiv Detail & Related papers (2021-04-26T04:17:13Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Driving-induced resonance narrowing in a strongly coupled cavity-qubit
system [0.7943023838493658]
We study a system consisting of a superconducting flux qubit strongly coupled to a microwave cavity.
We observe resonance narrowing in the region where the splitting between the two dressed fundamental resonances is tuned to zero.
arXiv Detail & Related papers (2020-08-01T09:29:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.