JUSTICE: A Benchmark Dataset for Supreme Court's Judgment Prediction
- URL: http://arxiv.org/abs/2112.03414v1
- Date: Mon, 6 Dec 2021 23:19:08 GMT
- Title: JUSTICE: A Benchmark Dataset for Supreme Court's Judgment Prediction
- Authors: Mohammad Alali, Shaayan Syed, Mohammed Alsayed, Smit Patel, Hemanth
Bodala
- Abstract summary: We aim to create a high-quality dataset of SCOTUS court cases so that they may be readily used in natural language processing (NLP) research and other data-driven applications.
By using advanced NLP algorithms to analyze previous court cases, the trained models are able to predict and classify a court's judgment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence is being utilized in many domains as of late, and the
legal system is no exception. However, as it stands now, the number of
well-annotated datasets pertaining to legal documents from the Supreme Court of
the United States (SCOTUS) is very limited for public use. Even though the
Supreme Court rulings are public domain knowledge, trying to do meaningful work
with them becomes a much greater task due to the need to manually gather and
process that data from scratch each time. Hence, our goal is to create a
high-quality dataset of SCOTUS court cases so that they may be readily used in
natural language processing (NLP) research and other data-driven applications.
Additionally, recent advances in NLP provide us with the tools to build
predictive models that can be used to reveal patterns that influence court
decisions. By using advanced NLP algorithms to analyze previous court cases,
the trained models are able to predict and classify a court's judgment given
the case's facts from the plaintiff and the defendant in textual format; in
other words, the model is emulating a human jury by generating a final verdict.
Related papers
- DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - Towards Explainability in Legal Outcome Prediction Models [64.00172507827499]
We argue that precedent is a natural way of facilitating explainability for legal NLP models.
By developing a taxonomy of legal precedent, we are able to compare human judges and neural models.
We find that while the models learn to predict outcomes reasonably well, their use of precedent is unlike that of human judges.
arXiv Detail & Related papers (2024-03-25T15:15:41Z) - Low-Resource Court Judgment Summarization for Common Law Systems [32.13166048504629]
We present CLSum, the first dataset for summarizing multi-jurisdictional common law court judgment documents.
This is the first court judgment summarization work adopting large language models (LLMs) in data augmentation, summary generation, and evaluation.
arXiv Detail & Related papers (2024-03-07T12:47:42Z) - LLM vs. Lawyers: Identifying a Subset of Summary Judgments in a Large UK
Case Law Dataset [0.0]
This study addresses the gap in the literature working with large legal corpora about how to isolate cases, in our case summary judgments, from a large corpus of UK court decisions.
We use the Cambridge Law Corpus of 356,011 UK court decisions and determine that the large language model achieves a weighted F1 score of 0.94 versus 0.78 for keywords.
We identify and extract 3,102 summary judgment cases, enabling us to map their distribution across various UK courts over a temporal span.
arXiv Detail & Related papers (2024-03-04T10:13:30Z) - The Ethics of Automating Legal Actors [58.81546227716182]
We argue that automating the role of the judge raises difficult ethical challenges, in particular for common law legal systems.
Our argument follows from the social role of the judge in actively shaping the law, rather than merely applying it.
Even in the case the models could achieve human-level capabilities, there would still be remaining ethical concerns inherent in the automation of the legal process.
arXiv Detail & Related papers (2023-12-01T13:48:46Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - ClassActionPrediction: A Challenging Benchmark for Legal Judgment
Prediction of Class Action Cases in the US [0.0]
We release for the first time a challenging LJP dataset focused on class action cases in the US.
It is the first dataset in the common law system that focuses on the harder and more realistic task involving the complaints as input instead of the often used facts summary written by the court.
Our Longformer model clearly outperforms the human baseline (63%), despite only considering the first 2,048 tokens. Furthermore, we perform a detailed error analysis and find that the Longformer model is significantly better calibrated than the human experts.
arXiv Detail & Related papers (2022-11-01T16:57:59Z) - Using attention methods to predict judicial outcomes [0.0]
We have used AI classifiers to predict judicial outcomes in the Brazilian legal system.
These texts formed a dataset of second-degree murder and active corruption cases.
Our research showed that Regression Trees, Gated Recurring Units and Hierarchical Attention Networks presented higher metrics for different subsets.
arXiv Detail & Related papers (2022-07-18T16:24:34Z) - Predicting Indian Supreme Court Judgments, Decisions, Or Appeals [0.403831199243454]
We introduce our newly developed ML-enabled legal prediction model and its operational prototype, eLegPredict.
eLegPredict is trained and tested over 3072 supreme court cases and has achieved 76% accuracy (F1-score)
The eLegPredict is equipped with a mechanism to aid end users, where as soon as a document with new case description is dropped into a designated directory, the system quickly reads through its content and generates prediction.
arXiv Detail & Related papers (2021-09-28T18:28:43Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.