DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment
- URL: http://arxiv.org/abs/2403.18435v1
- Date: Wed, 27 Mar 2024 10:40:14 GMT
- Title: DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment
- Authors: Haitao Li, Qingyao Ai, Xinyan Han, Jia Chen, Qian Dong, Yiqun Liu, Chong Chen, Qi Tian,
- Abstract summary: We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
- Score: 55.91429725404988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research demonstrates the effectiveness of using pre-trained language models for legal case retrieval. Most of the existing works focus on improving the representation ability for the contextualized embedding of the [CLS] token and calculate relevance using textual semantic similarity. However, in the legal domain, textual semantic similarity does not always imply that the cases are relevant enough. Instead, relevance in legal cases primarily depends on the similarity of key facts that impact the final judgment. Without proper treatments, the discriminative ability of learned representations could be limited since legal cases are lengthy and contain numerous non-key facts. To this end, we introduce DELTA, a discriminative model designed for legal case retrieval. The basic idea involves pinpointing key facts in legal cases and pulling the contextualized embedding of the [CLS] token closer to the key facts while pushing away from the non-key facts, which can warm up the case embedding space in an unsupervised manner. To be specific, this study brings the word alignment mechanism to the contextual masked auto-encoder. First, we leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability. Second, we employ the deep decoder to enable translation between different structures, with the goal of pinpointing key facts to enhance discriminative ability. Comprehensive experiments conducted on publicly available legal benchmarks show that our approach can outperform existing state-of-the-art methods in legal case retrieval. It provides a new perspective on the in-depth understanding and processing of legal case documents.
Related papers
- Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation [22.85652668826498]
This paper introduces KELLER, a legal knowledge-guided case reformulation approach based on large language models (LLMs)
By incorporating professional legal knowledge about crimes and law articles, we enable large language models to accurately reformulate the original legal case into concise sub-facts of crimes.
arXiv Detail & Related papers (2024-06-28T08:59:45Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
We propose a novel few-shot workflow tailored to the relevant judgment of legal cases.
By comparing the relevance judgments of LLMs and human experts, we empirically show that we can obtain reliable relevance judgments.
arXiv Detail & Related papers (2024-03-27T09:46:56Z) - LLM vs. Lawyers: Identifying a Subset of Summary Judgments in a Large UK
Case Law Dataset [0.0]
This study addresses the gap in the literature working with large legal corpora about how to isolate cases, in our case summary judgments, from a large corpus of UK court decisions.
We use the Cambridge Law Corpus of 356,011 UK court decisions and determine that the large language model achieves a weighted F1 score of 0.94 versus 0.78 for keywords.
We identify and extract 3,102 summary judgment cases, enabling us to map their distribution across various UK courts over a temporal span.
arXiv Detail & Related papers (2024-03-04T10:13:30Z) - MUSER: A Multi-View Similar Case Retrieval Dataset [65.36779942237357]
Similar case retrieval (SCR) is a representative legal AI application that plays a pivotal role in promoting judicial fairness.
Existing SCR datasets only focus on the fact description section when judging the similarity between cases.
We present M, a similar case retrieval dataset based on multi-view similarity measurement and comprehensive legal element with sentence-level legal element annotations.
arXiv Detail & Related papers (2023-10-24T08:17:11Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Legal Element-oriented Modeling with Multi-view Contrastive Learning for
Legal Case Retrieval [3.909749182759558]
We propose an interaction-focused network for legal case retrieval with a multi-view contrastive learning objective.
Case-view contrastive learning minimizes the hidden space distance between relevant legal case representations.
We employ a legal element knowledge-aware indicator to detect legal elements of cases.
arXiv Detail & Related papers (2022-10-11T06:47:23Z) - A Principled Design of Image Representation: Towards Forensic Tasks [75.40968680537544]
We investigate the forensic-oriented image representation as a distinct problem, from the perspectives of theory, implementation, and application.
At the theoretical level, we propose a new representation framework for forensics, called Dense Invariant Representation (DIR), which is characterized by stable description with mathematical guarantees.
We demonstrate the above arguments on the dense-domain pattern detection and matching experiments, providing comparison results with state-of-the-art descriptors.
arXiv Detail & Related papers (2022-03-02T07:46:52Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
Causal inference is the process of capturing cause-effect relationship among variables.
We propose a novel Graph-based Causal Inference framework, which builds causal graphs from fact descriptions without much human involvement.
We observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.
arXiv Detail & Related papers (2021-04-19T16:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.