High-fidelity state transfer via quantum walks from delocalized states
- URL: http://arxiv.org/abs/2112.03429v3
- Date: Mon, 11 Mar 2024 11:29:10 GMT
- Title: High-fidelity state transfer via quantum walks from delocalized states
- Authors: Jo\~ao P. Engster, Rafael Vieira, Eduardo I. Duzzioni, Edgard P. M.
Amorim
- Abstract summary: We study the state transfer through quantum walks placed on a bounded one-dimensional path.
We find such a state when superposing centered on the starting and antipodal positions preserves a high fidelity for a long time.
We also explore discrete-time quantum walks to evaluate the qubit fidelity throughout the walk.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the state transfer through quantum walks placed on a bounded
one-dimensional path. We first consider continuous-time quantum walks from a
Gaussian state. We find such a state when superposing centered on the starting
and antipodal positions preserves a high fidelity for a long time and when sent
on large circular graphs. Furthermore, it spreads with a null group velocity.
We also explore discrete-time quantum walks to evaluate the qubit fidelity
throughout the walk. In this case, the initial state is a product of states
between a qubit and a Gaussian superposition of position states. Then, we add
two $\sigma_x$ gates to confine this delocalized qubit. We also find that this
bounded system dynamically enables periodic recovery of the initial separable
state. We outline some applications of our results in dynamic graphs and
propose quantum circuits to implement them based on the available literature.
Related papers
- State transfer in discrete-time quantum walks via projected transition matrices [0.0]
We consider state transfer in quantum walks by using methods.
We define peak state transfer as the highest state transfer that could be achieved between an initial and a target state.
arXiv Detail & Related papers (2024-11-08T13:35:27Z) - Search and state transfer between hubs by quantum walks [0.0]
We show that the continuous-time quantum walk allows for perfect state transfer between multiple hubs if the numbers of senders and receivers are close.
We also consider the case of transfer between multiple senders and receivers.
arXiv Detail & Related papers (2024-09-04T13:43:23Z) - Discrete Quantum Gaussians and Central Limit Theorem [0.0]
We study states in discrete-variable (DV) quantum systems.
stabilizer states play a role in DV quantum systems similar to the role Gaussian states play in continuous-variable systems.
arXiv Detail & Related papers (2023-02-16T17:03:19Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - History states of one-dimensional quantum walks [0.0]
We analyze the application of the history state formalism to quantum walks.
The formalism allows one to describe the whole walk through a pure quantum history state.
A quantum circuit for generating the quantum walk history state is provided as well.
arXiv Detail & Related papers (2022-08-02T01:12:22Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Robust preparation of Wigner-negative states with optimized
SNAP-displacement sequences [41.42601188771239]
We create non-classical states of light in three-dimensional microwave cavities.
These states are useful for quantum computation.
We show that this way of creating non-classical states is robust to fluctuations of the system parameters.
arXiv Detail & Related papers (2021-11-15T18:20:38Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Second-order topological insulator in a coinless discrete-time quantum
walk [3.7528520149256006]
We construct a two-dimensional coinless quantum walk to simulate second-order topological insulator with zero-dimensional corner states.
We show that both of the corner and edge states can be observed through the probability distribution of the walker.
We propose a possible experimental implementation to realize this discrete-time quantum walk in a three-dimensional integrated photonic circuits.
arXiv Detail & Related papers (2020-03-19T09:07:34Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.