Robust preparation of Wigner-negative states with optimized
SNAP-displacement sequences
- URL: http://arxiv.org/abs/2111.07965v2
- Date: Mon, 6 Jun 2022 15:35:41 GMT
- Title: Robust preparation of Wigner-negative states with optimized
SNAP-displacement sequences
- Authors: Marina Kudra, Mikael Kervinen, Ingrid Strandberg, Shahnawaz Ahmed,
Marco Scigliuzzo, Amr Osman, Daniel P\'erez Lozano, Mats O. Thol\'en,
Riccardo Borgani, David B. Haviland, Giulia Ferrini, Jonas Bylander, Anton
Frisk Kockum, Fernando Quijandr\'ia, Per Delsing, Simone Gasparinetti
- Abstract summary: We create non-classical states of light in three-dimensional microwave cavities.
These states are useful for quantum computation.
We show that this way of creating non-classical states is robust to fluctuations of the system parameters.
- Score: 41.42601188771239
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hosting non-classical states of light in three-dimensional microwave cavities
has emerged as a promising paradigm for continuous-variable quantum information
processing. Here we experimentally demonstrate high-fidelity generation of a
range of Wigner-negative states useful for quantum computation, such as
Schr\"{o}dinger-cat states, binomial states, Gottesman-Kitaev-Preskill (GKP)
states, as well as cubic phase states. The latter states have been long sought
after in quantum optics and were never achieved experimentally before. To do
so, we use a sequence of interleaved selective number-dependent arbitrary phase
(SNAP) gates and displacements. We optimize the state preparation in two steps.
First we use a gradient-descent algorithm to optimize the parameters of the
SNAP and displacement gates. Then we optimize the envelope of the pulses
implementing the SNAP gates. Our results show that this way of creating highly
non-classical states in a harmonic oscillator is robust to fluctuations of the
system parameters such as the qubit frequency and the dispersive shift.
Related papers
- Floquet operator engineering for quantum state stroboscopic
stabilization [0.0]
This work focuses on the tailoring of a unitary evolution leading to the stroboscopic stabilization of quantum states of a Bose-Einstein condensate in an optical lattice.
We show how, for states with space and time symmetries, such an evolution can be derived from the initial state-preparation controls.
Numerical optimizations highlight the existence of a quantum speed limit for this stabilization process, and our experimental results demonstrate the efficient stabilization of a broad range of quantum states in the lattice.
arXiv Detail & Related papers (2023-07-28T11:02:50Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - The squeezed Kerr oscillator: spectral kissing and phase-flip robustness [0.0]
We realize an elementary quantum optics model, the squeezed Kerr oscillator.
For the first time, we resolve up to the tenth excited state.
Considering the Kerr-cat qubit encoded in this ground state manifold, we achieve for the first time quantum nondemolition readout fidelities greater than 99%.
arXiv Detail & Related papers (2022-09-08T17:21:27Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Mitigated barren plateaus in the time-nonlocal optimization of analog
quantum-algorithm protocols [0.0]
algorithmic classes such as variational quantum algorithms have been shown to suffer from barren plateaus.
We present an approach to quantum algorithm optimization that is based on trainable Fourier coefficients of Hamiltonian system parameters.
arXiv Detail & Related papers (2021-11-15T21:13:10Z) - Stroboscopic quantum nondemolition measurements for enhanced
entanglement generation between atomic ensembles [3.0734813171130204]
We develop a measurement operator formalism to handle quantum nondemolition (QND) measurement induced entanglement generation between two atomic gases.
We show several mathematical identities which greatly simplify the state evolution in the projection sequence.
Our formalism does not use the Holstein-Primakoff approximation as is conventionally done, and treats the spins of the atomic gases in an exact way.
arXiv Detail & Related papers (2021-10-18T06:30:20Z) - Wave-function engineering via conditional quantum teleportation with
non-Gaussian entanglement resource [0.0]
We propose and analyze a setup to tailor the wave functions of the quantum states.
We can generate various classes of quantum states such as Schr"odinger cat states, four-component cat states, superpositions of Fock states, and cubic phase states.
arXiv Detail & Related papers (2021-02-04T01:31:11Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.