Dark Exciton Giant Rabi Oscillations with no External Magnetic Field
- URL: http://arxiv.org/abs/2112.03679v2
- Date: Wed, 18 May 2022 21:53:31 GMT
- Title: Dark Exciton Giant Rabi Oscillations with no External Magnetic Field
- Authors: Vladimir Vargas-Calder\'on, Herbert Vinck-Posada, and J. M.
Villas-Boas
- Abstract summary: We study a system consisting of a semiconductor quantum dot pumped by a driving laser, and coupled to an acoustic cavity.
This kind of systems has proven to yield interesting multi-phonon phenomena, but the description of the quantum dot has been limited to a two-level system.
We highlight two outstanding features: first, we are able to create dark states excitations in the quantum dot without the usual external magnetic field needed to do so.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-phonon physics is an emerging field that serves as a test bed for
fundamental quantum physics and several applications in metrology, on-chip
communication, among others. Quantum acoustic cavities or resonators are
devices that are being used to study multi-phonon phenomena both theoretically
and experimentally. In particular, we study a system consisting of a
semiconductor quantum dot pumped by a driving laser, and coupled to an acoustic
cavity. This kind of systems has proven to yield interesting multi-phonon
phenomena, but the description of the quantum dot has been limited to a
two-level system. This limitation restrains the complexity that a true
semiconductor quantum dot can offer. Instead, in this work we consider a model
where the quantum dot can have both bright and dark excitons, the latter being
particularly useful due to their lower decoherence rates, because they do not
present spontaneous photon emission. In this setup, we demonstrate that by
fine-tuning the driving laser frequency, one is able to realise giant Rabi
oscillations between the vacuum state and a dark exciton state with $N$-phonon
bundles. From this, we highlight two outstanding features: first, we are able
to create dark states excitations in the quantum dot without the usual external
magnetic field needed to do so; and second, in a dissipative scenario where the
acoustic cavity and the quantum dot suffer from losses, the system acts as a
phonon gun able to emit $N$-phonon bundles.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Hamiltonian Engineering of collective XYZ spin models in an optical cavity [0.0]
Quantum simulation using synthetic quantum systems offers unique opportunities to explore open questions in many-body physics.
Here, we are able to realize an all-to-all interaction with arbitrary quadratic Hamiltonian or effectively an infinite range tunable Heisenberg XYZ model.
The versatility of our platform to include more than two relevant momentum states, combined with the flexibility of the simulated Hamiltonians by adding cavity tones opens rich opportunities for quantum simulation and quantum sensing in matter-wave interferometers and other quantum sensors such as optical clocks and magnetometers.
arXiv Detail & Related papers (2024-02-29T18:26:13Z) - A Superconducting Single-Atom Phonon Laser [0.0]
We experimentally demonstrate a direct quantum-acoustic equivalent of a single-atom laser.
A single superconducting qubit coupled to a high-overtone bulk acoustic resonator is used to drive the onset of phonon lasing.
We observe the absence of a sharp lower lasing threshold and characteristic upper lasing threshold, unique predictions of single-atom lasing.
arXiv Detail & Related papers (2023-12-21T15:37:55Z) - Superdiffusion of vortices in two-component quantum fluids of light [0.0]
Kerr nonlinearity promotes interactions between the photons, displaying features that are analogue of a Bose-Einstein condensates.
We numerically solve the problem by simulating a vortex-like impurity in the presence of noise.
We support our results with a theory that has been previously developed for the brownian motion of point-like particles.
arXiv Detail & Related papers (2023-12-11T12:04:40Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum optics of ultracold quantum gases: open systems beyond
dissipation (habilitation thesis) [0.0]
We show that light is a quantum nondemolition probe of many-body phases.
Measurement backaction is a novel source of competitions in many-body systems.
We propose quantum simulators based on collective light-matter interaction.
arXiv Detail & Related papers (2022-03-28T17:38:30Z) - Revealing higher-order light and matter energy exchanges using quantum
trajectories in ultrastrong coupling [0.0]
We extend the formalism of quantum trajectories to open quantum systems with ultrastrong coupling.
We analyze the impact of the chosen unravelling (i.e., how one collects the output field of the system) for the quantum trajectories.
arXiv Detail & Related papers (2021-07-19T11:22:12Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.