Causal Imitative Model for Autonomous Driving
- URL: http://arxiv.org/abs/2112.03908v1
- Date: Tue, 7 Dec 2021 18:59:15 GMT
- Title: Causal Imitative Model for Autonomous Driving
- Authors: Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar,
Alexandre Alahi
- Abstract summary: We propose Causal Imitative Model (CIM) to address inertia and collision problems.
CIM explicitly discovers the causal model and utilizes it to train the policy.
Our experiments show that our method outperforms previous work in terms of inertia and collision rates.
- Score: 85.78593682732836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imitation learning is a powerful approach for learning autonomous driving
policy by leveraging data from expert driver demonstrations. However, driving
policies trained via imitation learning that neglect the causal structure of
expert demonstrations yield two undesirable behaviors: inertia and collision.
In this paper, we propose Causal Imitative Model (CIM) to address inertia and
collision problems. CIM explicitly discovers the causal model and utilizes it
to train the policy. Specifically, CIM disentangles the input to a set of
latent variables, selects the causal variables, and determines the next
position by leveraging the selected variables. Our experiments show that our
method outperforms previous work in terms of inertia and collision rates.
Moreover, thanks to exploiting the causal structure, CIM shrinks the input
dimension to only two, hence, can adapt to new environments in a few-shot
setting. Code is available at https://github.com/vita-epfl/CIM.
Related papers
- Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models [60.87795376541144]
A world model is a neural network capable of predicting an agent's next state given past states and actions.
During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations.
We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing.
arXiv Detail & Related papers (2024-09-25T06:48:25Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Steering Without Side Effects: Improving Post-Deployment Control of Language Models [61.99293520621248]
Language models (LMs) have been shown to behave unexpectedly post-deployment.
We present KL-then-steer (KTS), a technique that decreases the side effects of steering while retaining its benefits.
Our best method prevents 44% of jailbreak attacks compared to the original Llama-2-chat-7B model.
arXiv Detail & Related papers (2024-06-21T01:37:39Z) - A Dual Approach to Imitation Learning from Observations with Offline Datasets [19.856363985916644]
Demonstrations are an effective alternative to task specification for learning agents in settings where designing a reward function is difficult.
We derive DILO, an algorithm that can leverage arbitrary suboptimal data to learn imitating policies without requiring expert actions.
arXiv Detail & Related papers (2024-06-13T04:39:42Z) - On Learning the Tail Quantiles of Driving Behavior Distributions via
Quantile Regression and Flows [13.540998552232006]
We consider the problem of learning models that accurately capture the diversity and tail quantiles of human driver behavior probability distributions.
We adapt two flexible quantile learning frameworks for this setting that avoid strong distributional assumptions.
We evaluate our approach in a one-step acceleration prediction task, and in multi-step driver simulation rollouts.
arXiv Detail & Related papers (2023-05-22T15:09:04Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
Driving SMARTS is a regular competition designed to tackle problems caused by the distribution shift in dynamic interaction contexts.
The proposed competition supports methodologically diverse solutions, such as reinforcement learning (RL) and offline learning methods.
arXiv Detail & Related papers (2022-11-14T17:10:53Z) - Building Safer Autonomous Agents by Leveraging Risky Driving Behavior
Knowledge [1.52292571922932]
This study focuses on creating risk prone scenarios with heavy traffic and unexpected random behavior for creating better model-free learning agents.
We generate multiple autonomous driving scenarios by creating new custom Markov Decision Process (MDP) environment iterations in highway-env simulation package.
We train model free learning agents with supplement information of risk prone driving scenarios and compare their performance with baseline agents.
arXiv Detail & Related papers (2021-03-16T23:39:33Z) - Modeling Human Driving Behavior through Generative Adversarial Imitation
Learning [7.387855463533219]
This article describes the use of Generative Adversarial Imitation Learning (GAIL) for learning-based driver modeling.
Because driver modeling is inherently a multi-agent problem, this paper describes a parameter-sharing extension of GAIL called PS-GAIL to tackle multi-agent driver modeling.
This paper describes Reward Augmented Imitation Learning (RAIL), which modifies the reward signal to provide domain-specific knowledge to the agent.
arXiv Detail & Related papers (2020-06-10T05:47:39Z) - Integrating Deep Reinforcement Learning with Model-based Path Planners
for Automated Driving [0.0]
We propose a hybrid approach for integrating a path planning pipe into a vision based DRL framework.
In summary, the DRL agent is trained to follow the path planner's waypoints as close as possible.
Experimental results show that the proposed method can plan its path and navigate between randomly chosen origin-destination points.
arXiv Detail & Related papers (2020-02-02T17:10:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.