On Learning the Tail Quantiles of Driving Behavior Distributions via
Quantile Regression and Flows
- URL: http://arxiv.org/abs/2305.13106v2
- Date: Thu, 27 Jul 2023 09:43:36 GMT
- Title: On Learning the Tail Quantiles of Driving Behavior Distributions via
Quantile Regression and Flows
- Authors: Jia Yu Tee, Oliver De Candido, Wolfgang Utschick, Philipp Geiger
- Abstract summary: We consider the problem of learning models that accurately capture the diversity and tail quantiles of human driver behavior probability distributions.
We adapt two flexible quantile learning frameworks for this setting that avoid strong distributional assumptions.
We evaluate our approach in a one-step acceleration prediction task, and in multi-step driver simulation rollouts.
- Score: 13.540998552232006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Towards safe autonomous driving (AD), we consider the problem of learning
models that accurately capture the diversity and tail quantiles of human driver
behavior probability distributions, in interaction with an AD vehicle. Such
models, which predict drivers' continuous actions from their states, are
particularly relevant for closing the gap between AD agent simulations and
reality. To this end, we adapt two flexible quantile learning frameworks for
this setting that avoid strong distributional assumptions: (1) quantile
regression (based on the titled absolute loss), and (2) autoregressive quantile
flows (a version of normalizing flows). Training happens in a behavior
cloning-fashion. We use the highD dataset consisting of driver trajectories on
several highways. We evaluate our approach in a one-step acceleration
prediction task, and in multi-step driver simulation rollouts. We report
quantitative results using the tilted absolute loss as metric, give qualitative
examples showing that realistic extremal behavior can be learned, and discuss
the main insights.
Related papers
- Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models [60.87795376541144]
A world model is a neural network capable of predicting an agent's next state given past states and actions.
During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations.
We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing.
arXiv Detail & Related papers (2024-09-25T06:48:25Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Tractable Joint Prediction and Planning over Discrete Behavior Modes for
Urban Driving [15.671811785579118]
We show that we can parameterize autoregressive closed-loop models without retraining.
We propose fully reactive closed-loop planning over discrete latent modes.
Our approach also outperforms the previous state-of-the-art in CARLA on challenging dense traffic scenarios.
arXiv Detail & Related papers (2024-03-12T01:00:52Z) - Controllable Diverse Sampling for Diffusion Based Motion Behavior
Forecasting [11.106812447960186]
We introduce a novel trajectory generator named Controllable Diffusion Trajectory (CDT)
CDT integrates information and social interactions into a Transformer-based conditional denoising diffusion model to guide the prediction of future trajectories.
To ensure multimodality, we incorporate behavioral tokens to direct the trajectory's modes, such as going straight, turning right or left.
arXiv Detail & Related papers (2024-02-06T13:16:54Z) - DICE: Diverse Diffusion Model with Scoring for Trajectory Prediction [7.346307332191997]
We present a novel framework that leverages diffusion models for predicting future trajectories in a computationally efficient manner.
We employ an efficient sampling mechanism that allows us to maximize the number of sampled trajectories for improved accuracy.
We show the effectiveness of our approach by conducting empirical evaluations on common pedestrian (UCY/ETH) and autonomous driving (nuScenes) benchmark datasets.
arXiv Detail & Related papers (2023-10-23T05:04:23Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - Beyond RMSE: Do machine-learned models of road user interaction produce
human-like behavior? [12.378231329297137]
We introduce quantitative metrics to demonstrate presence of three different behavioral phenomena in a naturalistic highway driving dataset.
We analyze the behavior of three machine-learned models using the same metrics.
arXiv Detail & Related papers (2022-06-22T14:04:39Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Calibration of Human Driving Behavior and Preference Using Naturalistic
Traffic Data [5.926030548326619]
We show how the model can be inverted to estimate driver preferences from naturalistic traffic data.
One distinct advantage of our approach is the drastically reduced computational burden.
arXiv Detail & Related papers (2021-05-05T01:20:03Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.