Signatures of clean phases in many-body localized quantum circuits
- URL: http://arxiv.org/abs/2112.03925v2
- Date: Wed, 22 Dec 2021 01:00:09 GMT
- Title: Signatures of clean phases in many-body localized quantum circuits
- Authors: Kaixiang Su, Michael J. Lawler
- Abstract summary: Many-body phenomena far from equilibrium present challenges beyond reach by classical computational resources.
Digital quantum computers provide a possible way forward but noise limits their use in the near-term.
We propose a scheme to simulate and characterize many-body Floquetsystems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many-body phenomena far from equilibrium present challenges beyond reach by
classical computational resources. Digital quantum computers provide a possible
way forward but noise limits their use in the near-term. We propose a scheme to
simulate and characterize many-body Floquetsystems hosting a rich variety of
phases that operates with a shallow depth circuit. Starting from a "clean"
periodic circuit that simulates the dynamical evolution of a Floquet system, we
introduce quasi-periodicity to the circuit parameters to prevent thermalization
by introducing many-body localization. By inspecting the time averaged
properties of the many-body integrals of motion, the phase structure can then
be probed using random measurements. This approach avoids the need to compute
the ground state and operates at finite energy density. We numerically
demonstrate this scheme with a simulation of the Floquet Ising model of
time-crystals and present results clearly distinguishing different Floquet
phases in the absence of quasi-periodicity in the circuit parameters. Our
results pave the way for mapping phase diagrams of exotic systems on near-term
quantum devices.
Related papers
- Slow Relaxation in a Glassy Quantum Circuit [0.0]
We introduce and analyze a Floquet random quantum circuit that can be tuned between glassy and fully ergodic behavior.
Using an effective field theory for random quantum circuits, we analyze the correlations between quasienergy eigenstates.
We show that the ramp of the spectral form factor is enhanced by a factor of the number of sectors in the glassy regime.
arXiv Detail & Related papers (2024-10-30T17:58:08Z) - Probing non-equilibrium dissipative phase transitions with trapped-ion
quantum simulators [0.5356944479760104]
Open quantum many-body systems with controllable dissipation can exhibit novel features in their dynamics and steady states.
We show that strong signatures of this dissipative phase transition and its non-equilibrium properties can be observed with a small system size.
Dissipation engineered in this way may allow the simulation of more general types of driven-dissipative systems.
arXiv Detail & Related papers (2023-11-10T17:31:00Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Simulating hydrodynamics on noisy intermediate-scale quantum devices
with random circuits [0.0]
We show that random circuits provide tailor-made building blocks for simulating quantum many-body systems.
Specifically, we propose an algorithm consisting of a random circuit followed by a trotterized Hamiltonian time evolution.
We numerically demonstrate the algorithm by simulating the buildup of correlation functions in one- and two-dimensional quantum spin systems.
arXiv Detail & Related papers (2020-12-04T19:00:00Z) - Estimating heating times in periodically driven quantum many-body
systems via avoided crossing spectroscopy [0.0]
A major limitation in such setups is that generally interacting, driven systems will heat up over time and lose the desired properties.
We propose a new approach, based on building the heating rate from microscopic processes, encoded in avoided level crossings of the Floquet propagator.
arXiv Detail & Related papers (2020-11-11T19:09:15Z) - Floquet dynamical quantum phase transitions in periodically quenched
systems [0.685316573653194]
Dynamical quantum phase transitions (DQPTs) are characterized by nonanalytic behaviors of physical observables as functions of time.
In this work, we explore Floquet DQPTs in a class of periodically quenched one-dimensional system with chiral symmetry.
arXiv Detail & Related papers (2020-10-31T06:19:31Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.