Effects of spatial quantization and Rabi-shifted resonances in single
and double excitation of quantum wells and wires induced by few-photon
optical field
- URL: http://arxiv.org/abs/2112.04217v1
- Date: Wed, 8 Dec 2021 10:39:33 GMT
- Title: Effects of spatial quantization and Rabi-shifted resonances in single
and double excitation of quantum wells and wires induced by few-photon
optical field
- Authors: Andrey Vasil'ev, Olga Tikhonova
- Abstract summary: We study the dynamics of Frenkel excitons and bi-excitons induced by few photon quantum light in a quantum well or wire of finite size.
The eigenenergies and eigenfunctions of the coupled exciton-photon states in a multiatomic system are found.
The role of spatial confinement as well as the energy quantization effects in 1D and 2D cases is analyzed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a fully quantum theoretical approach which describes the dynamics
of Frenkel excitons and bi-excitons induced by few photon quantum light in a
quantum well or wire (atomic chain) of finite size. The eigenenergies and
eigenfunctions of the coupled exciton-photon states in a multiatomic system are
found and the role of spatial confinement as well as the energy quantization
effects in 1D and 2D cases is analyzed. Due to the spatial quantization, the
excitation process is found to consist in the Rabi-like oscillations between
the collective symmetric states characterized by discrete energy levels and
arising in the picture of the ladder bosonic operators. At the same time, the
enhanced excitation of additional states with energy close to the upper
polariton branch is revealed. The found new effect is referred to as the
formation of Rabi-shifted resonances and is analyzed in details. Such states
are shown to influence dramatically on the dynamics of excitation especially in
the limit of large times.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Quantum Multiphoton Rabi Oscillations in Waveguide QED [0.0]
Future of quantum information processing hinges on chip-scale nanophotonics, specifically cavity QED and waveguide QED.
One of the foremost processes underpinning quantum photonic technologies is the phenomenon of Rabi oscillations.
We analytically explore the scattering dynamics of the photonic Fock state as it interfaces with a two-level emitter.
arXiv Detail & Related papers (2023-10-24T00:03:38Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Signatures of dynamically dressed states [0.0]
We present the first experimental observation of the complete resonance fluorescence emission spectrum of a single quantum two-level system.
We observe multiple emerging sidebands as predicted by theory with an increase of their number and spectral detuning with excitation pulse intensity.
arXiv Detail & Related papers (2023-05-25T08:14:26Z) - Tunable phononic coupling in excitonic quantum emitters [6.510363316842893]
We report the deterministic creation of quantum emitters featuring highly tunable coupling between excitons and phonons.
The quantum emitters are formed in strain-induced quantum dots created in homobilayer semiconductor WSe2.
arXiv Detail & Related papers (2023-02-27T02:47:56Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - 0D-2D Heterostructure for making very Large Quantum Registers using
itinerant Bose-Einstein Condensate of Excitons [0.08399688944263842]
Presence of coherent resonant tunneling in quantum dot (zero-dimensional) - quantum well (two-dimensional) heterostructure is necessary to explain electrical polarization of excitonic dipoles over a macroscopically large area.
Observations point to experimental control of macroscopically large, quantum state of a two-component Bose-Einstein condensate of excitons in this quantum dot - quantum well heterostructure.
arXiv Detail & Related papers (2021-07-28T17:42:12Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.