A Hierarchical Spatio-Temporal Graph Convolutional Neural Network for
Anomaly Detection in Videos
- URL: http://arxiv.org/abs/2112.04294v2
- Date: Fri, 10 Dec 2021 05:33:14 GMT
- Title: A Hierarchical Spatio-Temporal Graph Convolutional Neural Network for
Anomaly Detection in Videos
- Authors: Xianlin Zeng, Yalong Jiang, Wenrui Ding, Hongguang Li, Yafeng Hao,
Zifeng Qiu
- Abstract summary: We propose a Hierarchical Spatio-Temporal Graph Convolutional Neural Network (HSTGCNN) to address these problems.
HSTGCNN is composed of multiple branches that correspond to different levels of graph representations.
High-level graph representations are assigned higher weights to encode moving speed and directions of people in low-resolution videos while low-level graph representations are assigned higher weights to encode human skeletons in high-resolution videos.
- Score: 11.423072255384469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models have been widely used for anomaly detection in
surveillance videos. Typical models are equipped with the capability to
reconstruct normal videos and evaluate the reconstruction errors on anomalous
videos to indicate the extent of abnormalities. However, existing approaches
suffer from two disadvantages. Firstly, they can only encode the movements of
each identity independently, without considering the interactions among
identities which may also indicate anomalies. Secondly, they leverage
inflexible models whose structures are fixed under different scenes, this
configuration disables the understanding of scenes. In this paper, we propose a
Hierarchical Spatio-Temporal Graph Convolutional Neural Network (HSTGCNN) to
address these problems, the HSTGCNN is composed of multiple branches that
correspond to different levels of graph representations. High-level graph
representations encode the trajectories of people and the interactions among
multiple identities while low-level graph representations encode the local body
postures of each person. Furthermore, we propose to weightedly combine multiple
branches that are better at different scenes. An improvement over single-level
graph representations is achieved in this way. An understanding of scenes is
achieved and serves anomaly detection. High-level graph representations are
assigned higher weights to encode moving speed and directions of people in
low-resolution videos while low-level graph representations are assigned higher
weights to encode human skeletons in high-resolution videos. Experimental
results show that the proposed HSTGCNN significantly outperforms current
state-of-the-art models on four benchmark datasets (UCSD Pedestrian,
ShanghaiTech, CUHK Avenue and IITB-Corridor) by using much less learnable
parameters.
Related papers
- ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
We design a new model named PoGeVon which leverages variational autoencoder (VAE) to predict missing values over both node time series features and graph structures.
Experiment results demonstrate the effectiveness of our model over baselines.
arXiv Detail & Related papers (2023-05-29T21:11:34Z) - Adaptive graph convolutional networks for weakly supervised anomaly
detection in videos [42.3118758940767]
We propose a weakly supervised adaptive graph convolutional network (WAGCN) to model the contextual relationships among video segments.
We fully consider the influence of other video segments on the current segment when generating the anomaly probability score for each segment.
arXiv Detail & Related papers (2022-02-14T06:31:34Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - A Deep Latent Space Model for Graph Representation Learning [10.914558012458425]
We propose a Deep Latent Space Model (DLSM) for directed graphs to incorporate the traditional latent variable based generative model into deep learning frameworks.
Our proposed model consists of a graph convolutional network (GCN) encoder and a decoder, which are layer-wise connected by a hierarchical variational auto-encoder architecture.
Experiments on real-world datasets show that the proposed model achieves the state-of-the-art performances on both link prediction and community detection tasks.
arXiv Detail & Related papers (2021-06-22T12:41:19Z) - Learning Multi-Granular Hypergraphs for Video-Based Person
Re-Identification [110.52328716130022]
Video-based person re-identification (re-ID) is an important research topic in computer vision.
We propose a novel graph-based framework, namely Multi-Granular Hypergraph (MGH) to better representational capabilities.
90.0% top-1 accuracy on MARS is achieved using MGH, outperforming the state-of-the-arts schemes.
arXiv Detail & Related papers (2021-04-30T11:20:02Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.