Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning
- URL: http://arxiv.org/abs/2103.13710v1
- Date: Thu, 25 Mar 2021 09:31:41 GMT
- Title: Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning
- Authors: Yanling Miao, Qi Wang, Mulin Chen, Xuelong Li
- Abstract summary: This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
- Score: 88.60285937702304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-based semi-supervised learning methods, which deal well with the
situation of limited labeled data, have shown dominant performance in practical
applications. However, the high dimensionality of hyperspectral images (HSI)
makes it hard to construct the pairwise adjacent graph. Besides, the fine
spatial features that help improve the discriminability of the model are often
overlooked. To handle the problems, this paper proposes a novel
spatial-spectral HSI classification method via multiple random anchor graphs
ensemble learning (RAGE). Firstly, the local binary pattern is adopted to
extract the more descriptive features on each selected band, which preserves
local structures and subtle changes of a region. Secondly, the adaptive
neighbors assignment is introduced in the construction of anchor graph, to
reduce the computational complexity. Finally, an ensemble model is built by
utilizing multiple anchor graphs, such that the diversity of HSI is learned.
Extensive experiments show that RAGE is competitive against the
state-of-the-art approaches.
Related papers
- Multi-level Graph Subspace Contrastive Learning for Hyperspectral Image Clustering [16.027471624621924]
This study proposes a multi-level graph subspace contrastive learning (MLGSC) for HSI clustering.
The proposed model is evaluated on four popular HSI datasets: Indian Pines, Pavia University, Houston, and Xu Zhou.
The overall accuracies are 97.75%, 99.96%, 92.28%, and 95.73%, which significantly outperforms the current state-of-the-art clustering methods.
arXiv Detail & Related papers (2024-04-08T05:50:46Z) - S2RC-GCN: A Spatial-Spectral Reliable Contrastive Graph Convolutional Network for Complex Land Cover Classification Using Hyperspectral Images [10.579474650543471]
This study proposes a novel spatial-spectral reliable contrastive graph convolutional classification framework named S2RC-GCN.
Specifically, we fused the spectral and spatial features extracted by the 1D- and 2D-encoder, and the 2D-encoder includes an attention model to automatically extract important information.
We then leveraged the fused high-level features to construct graphs and fed the resulting graphs into the GCNs to determine more effective graph representations.
arXiv Detail & Related papers (2024-04-01T07:17:02Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Semi-supervised Superpixel-based Multi-Feature Graph Learning for
Hyperspectral Image Data [0.0]
We present a novel framework for the classification of Hyperspectral Image (HSI) data in light of a very limited amount of labelled data.
We propose a multi-stage edge-efficient semi-supervised graph learning framework for HSI data.
arXiv Detail & Related papers (2021-04-27T15:36:26Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.