論文の概要: Mixed Membership Distribution-Free model
- arxiv url: http://arxiv.org/abs/2112.04389v1
- Date: Sat, 4 Dec 2021 18:21:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-09 14:29:08.203608
- Title: Mixed Membership Distribution-Free model
- Title(参考訳): 混合会員分配フリーモデル
- Authors: Huan Qing
- Abstract要約: 本稿では,この問題に対する総合的混合メンバーシップ分布自由モデルを提案する。
このモデルでは,効率的なスペクトルアルゴリズムを用いてコミュニティメンバシップを推定する。
シミュレーションネットワークの小型化に応用した混合メンバーシップ分布自由モデルの利点を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of detecting latent community information of mixed
membership weighted network in which nodes have mixed memberships and edges
connecting between nodes can be finite real numbers. We propose a general mixed
membership distribution-free model for this problem. The model has no
distribution constraints of edges but only the expected values, and can be
viewed as generalizations of some previous models. We use an efficient spectral
algorithm to estimate community memberships under the model. We also derive the
convergence rate of the proposed algorithm under the model using delicate
spectral analysis. We demonstrate the advantages of mixed membership
distribution-free model with applications to a small scale of simulated
networks when edges follow different distributions.
- Abstract(参考訳): 本稿では,ノード間を接続するエッジが有限個の実数となる混成メンバシップ重み付きネットワークの潜在コミュニティ情報を検出する問題について考察する。
本稿では,この問題に対する混合会員分布自由モデルを提案する。
このモデルはエッジの分布制約を持たないが、期待値のみを持ち、以前のモデルの一般化と見なすことができる。
このモデルでは,効率的なスペクトルアルゴリズムを用いてコミュニティメンバシップを推定する。
また,このモデルに基づくアルゴリズムの収束率を,精巧なスペクトル解析を用いて導出する。
エッジが異なる分布に従う場合のシミュレーションネットワークの小型化に適用可能な混合メンバーシップフリーモデルの利点を実証する。
関連論文リスト
- Bipartite mixed membership distribution-free model. A novel model for community detection in overlapping bipartite weighted networks [0.4972323953932129]
本稿では,BiMMDF(Bipartite Mixed Membership Distribution-Free)モデルを提案する。
我々のモデルでは、ノードのメンバシップに関連するブロック構造が期待されている限り、隣接行列は任意の分布に従うことができる。
理論的に一貫した推定を保証した効率的なアルゴリズムをBiMMDFに適合させる。
論文 参考訳(メタデータ) (2022-11-02T06:26:47Z) - A Novel Unified Conditional Score-based Generative Framework for
Multi-modal Medical Image Completion [54.512440195060584]
我々は、スコアベース生成モデル(SGM)を活用するために、統一多モードスコアベース生成モデル(UMM-CSGM)を提案する。
UMM-CSGMは、新しいマルチインマルチアウトコンディションスコアネットワーク(mm-CSN)を用いて、クロスモーダル条件分布の包括的集合を学習する。
BraTS19データセットの実験により、UMM-CSGMは腫瘍誘発病変における不均一な増強と不規則な領域をより確実に合成できることが示された。
論文 参考訳(メタデータ) (2022-07-07T16:57:21Z) - A new perspective on probabilistic image modeling [92.89846887298852]
本稿では,密度推定,サンプリング,トラクタブル推論が可能な画像モデリングのための新しい確率論的手法を提案する。
DCGMMは、CNNのように、ランダムな初期条件からSGDによってエンドツーエンドに訓練することができる。
本研究は,近年のPCおよびSPNモデルと,推論,分類,サンプリングの観点から比較した。
論文 参考訳(メタデータ) (2022-03-21T14:53:57Z) - Bayesian community detection for networks with covariates [16.230648949593153]
科学界でもっとも注目されているのは「コミュニティ検出」である。
共依存型ランダムパーティションを持つブロックモデルを提案する。
本モデルでは, 後部推測により, コミュニティの数を知ることができる。
論文 参考訳(メタデータ) (2022-03-04T01:58:35Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
暗黙のニューラルネットワークは、競合性能とメモリ消費の削減を提供する。
入力逆流の摂動に関して、それらは不安定なままである。
本稿では,暗黙的ニューラルネットワークのロバスト性検証のための理論的および計算的枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-10T03:08:55Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Community models for networks observed through edge nominations [6.442024233731203]
コミュニティはネットワークにおいて一般的で広く研究されている構造であり、一般的にはネットワークが完全に正しく観察されているという仮定のもとである。
問合せノードを経由したエッジの記録に基づく,ネットワークサンプリング機構のクラスに対する汎用モデルを提案する。
一般モデルに基づくスペクトルクラスタリングにより,コミュニティ検出が可能であることを示す。
論文 参考訳(メタデータ) (2020-08-09T04:53:13Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
大規模不均一表現学習のためのマルチセマンティックメタパス(MSM)モデルを提案する。
具体的には,マルチセマンティックなメタパスに基づくランダムウォークを生成し,不均衡な分布を扱うヘテロジニアスな近傍を構築する。
提案するフレームワークに対して,AmazonとAlibabaの2つの挑戦的なデータセットに対して,体系的な評価を行う。
論文 参考訳(メタデータ) (2020-07-19T22:50:20Z) - Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable
Structured Priors [13.712395104755783]
混合メンバシップブロックモデル(MMSB)は、コミュニティ検出とネットワーク生成のための一般的なフレームワークである。
最近開発された統計リレーショナル学習モデルであるヒンジロスマルコフ確率場(HL-MRF)を用いた柔軟なMMSBモデル、textitStruct-MMSBを提案する。
我々のモデルは、観測された特徴と会員分布の複雑な組み合わせとして符号化された有意義な潜伏変数を用いて、実世界のネットワークにおける潜伏特性を学習することができる。
論文 参考訳(メタデータ) (2020-02-21T19:32:32Z) - Fragmentation Coagulation Based Mixed Membership Stochastic Blockmodel [17.35449041036449]
MMSB(Mixed-Membership Blockmodel)は,ネットワークデータの基盤となる複雑な隠れ構造を学習するのに適した,最先端のベイズ的手法の一つとして提案されている。
本モデルでは,エンティティのコミュニティ情報を抽出するエンティティベースのクラスタリングと,リンクのグループ情報を同時に導出するリンケージベースのクラスタリングを行う。
コミュニティ構造とグループ互換行列を統合することにより、MMSBの一般化版を導出する。
論文 参考訳(メタデータ) (2020-01-17T22:02:23Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。