Thermodynamic optimization of quantum algorithms: On-the-go erasure of
qubit registers
- URL: http://arxiv.org/abs/2112.04402v2
- Date: Wed, 21 Dec 2022 20:06:21 GMT
- Title: Thermodynamic optimization of quantum algorithms: On-the-go erasure of
qubit registers
- Authors: Florian Meier and L\'idia del Rio
- Abstract summary: "On-the-go erasure" of quantum registers that are no longer needed for a given algorithm.
Freezing up auxiliary qubits as they stop being useful would facilitate the parallelization of computations.
For the class of algorithms solving the Abelian hidden subgroup problem, we find optimal on-the-go erasure protocols.
- Score: 1.5229257192293197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider two bottlenecks in quantum computing: limited memory size and
noise caused by heat dissipation. Trying to optimize both, we investigate
"on-the-go erasure" of quantum registers that are no longer needed for a given
algorithm: freeing up auxiliary qubits as they stop being useful would
facilitate the parallelization of computations. We study the minimal
thermodynamic cost of erasure in these scenarios, applying results on the
Landauer erasure of entangled quantum registers. For the class of algorithms
solving the Abelian hidden subgroup problem, we find optimal on-the-go erasure
protocols. We conclude that there is a trade-off: if we have enough partial
information about a problem to build efficient on-the-go erasure, we can use it
to instead simplify the algorithm, so that fewer qubits are needed to run the
computation in the first place. We provide explicit protocols for these two
approaches.
Related papers
- Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Making the cut: two methods for breaking down a quantum algorithm [0.0]
It remains a major challenge to find quantum algorithms that may reach computational advantage in the present era of noisy, small-scale quantum hardware.
We identify and characterize two methods of breaking down'' quantum algorithms into rounds of lower (query) depth.
We show that for the first problem parallelization offers the best performance, while for the second is the better choice.
arXiv Detail & Related papers (2023-05-17T18:00:06Z) - Sequential minimum optimization algorithm with small sample size
estimators [0.06445605125467573]
Sequential minimum optimization is a machine-learning global search training algorithm.
We apply it to photonics circuits where the additional challenge appears: low frequency of coincidence events lowers the speed of the algorithm.
arXiv Detail & Related papers (2023-03-02T06:02:46Z) - Quantum Sparse Coding [5.130440339897477]
We develop a quantum-inspired algorithm for sparse coding.
The emergence of quantum computers and Ising machines can potentially lead to more accurate estimations.
We conduct numerical experiments with simulated data on Lightr's quantum-inspired digital platform.
arXiv Detail & Related papers (2022-09-08T13:00:30Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
Coherent control of quantum computations can be used to improve some quantum protocols and algorithms.
We refine the PBS-calculus, a graphical language for coherent control inspired by quantum optics.
arXiv Detail & Related papers (2022-02-10T18:59:52Z) - Reducing the Depth of Linear Reversible Quantum Circuits [0.0]
In quantum computing the decoherence time of the qubits determines the computation time available.
We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms.
Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.
arXiv Detail & Related papers (2022-01-17T12:36:32Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Qubit-efficient entanglement spectroscopy using qubit resets [0.0]
We develop qubit-efficient quantum algorithms for entanglement spectroscopy on NISQ devices.
Our algorithms use fewer qubits than any previous efficient algorithm while achieving similar performance in the presence of noise.
We also introduce the notion of effective circuit depth as a generalization of standard circuit depth suitable for circuits with qubit resets.
arXiv Detail & Related papers (2020-10-06T23:22:57Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.