Solving quadratic binary optimization problems using quantum SDP methods: Non-asymptotic running time analysis
- URL: http://arxiv.org/abs/2502.15426v1
- Date: Fri, 21 Feb 2025 12:54:05 GMT
- Title: Solving quadratic binary optimization problems using quantum SDP methods: Non-asymptotic running time analysis
- Authors: Fabian Henze, Viet Tran, Birte Ostermann, Richard Kueng, Timo de Wolff, David Gross,
- Abstract summary: Quantum computers can solve semidefinite programs (SDPs) using resources that scale better than state-of-the-art classical methods.<n>We present an analysis of the non-asymptotic resource requirements of a quantum SDP solver.
- Score: 1.9081120388919084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers can solve semidefinite programs (SDPs) using resources that scale better than state-of-the-art classical methods as a function of the problem dimension. At the same time, the known quantum algorithms scale very unfavorably in the precision, which makes it non-trivial to find applications for which the quantum methods are well-suited. Arguably, precision is less crucial for SDP relaxations of combinatorial optimization problems (such as the Goemans-Williamson algorithm), because these include a final rounding step that maps SDP solutions to binary variables. With this in mind, Brand\~ao, Fran\c{c}a, and Kueng have proposed to use quantum SDP solvers in order to achieve an end-to-end speed-up for obtaining approximate solutions to combinatorial optimization problems. They did indeed succeed in identifying an algorithm that realizes a polynomial quantum advantage in terms of its asymptotic running time. However, asymptotic results say little about the problem sizes for which advantages manifest. Here, we present an analysis of the non-asymptotic resource requirements of this algorithm. The work consists of two parts. First, we optimize the original algorithm with a particular emphasis on performance for realistic problem instances. In particular, we formulate a version with adaptive step-sizes, an improved detection criterion for infeasible instances, and a more efficient rounding procedure. In a second step, we benchmark both the classical and the quantum version of the algorithm. The benchmarks did not identify a regime where even the optimized quantum algorithm would beat standard classical approaches for input sizes that can be realistically solved at all. In the absence of further significant improvements, these algorithms therefore fall into a category sometimes called galactic: Unbeaten in their asymptotic scaling behavior, but not practical for realistic problems.
Related papers
- Quantum evolutionary algorithm for TSP combinatorial optimisation problem [0.0]
This paper implements a new way of solving a problem called the traveling salesman problem (TSP) using quantum genetic algorithm (QGA)
We compared how well this new approach works to the traditional method known as a classical genetic algorithm (CGA)
arXiv Detail & Related papers (2024-09-20T08:27:42Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - An adaptive Bayesian quantum algorithm for phase estimation [0.0]
We present a coherence-based phase-estimation algorithm which can achieve the optimal quadratic scaling in the mean absolute error and the mean squared error.
In the presence of noise, our algorithm produces errors that approach the theoretical lower bound.
arXiv Detail & Related papers (2023-03-02T19:00:01Z) - Enhancing Quantum Algorithms for Quadratic Unconstrained Binary Optimization via Integer Programming [0.0]
In this work, we integrate the potentials of quantum and classical techniques for optimization.
We reduce the problem size according to a linear relaxation such that the reduced problem can be handled by quantum machines of limited size.
We present numerous computational results from real quantum hardware.
arXiv Detail & Related papers (2023-02-10T20:12:53Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
We propose an Ising formulation of integer optimization problems to utilize quantum annealing in the iterative improvement strategy.
We analytically show that a first-order phase transition is successfully avoided for a fully connected ferro Potts model if the overlap between a ground state and a candidate solution exceeds a threshold.
arXiv Detail & Related papers (2022-11-08T02:12:49Z) - Stochastic optimization algorithms for quantum applications [0.0]
We review the use of first-order, second-order, and quantum natural gradient optimization methods, and propose new algorithms defined in the field of complex numbers.
The performance of all methods is evaluated by means of their application to variational quantum eigensolver, quantum control of quantum states, and quantum state estimation.
arXiv Detail & Related papers (2022-03-11T16:17:05Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.