Online Calibrated and Conformal Prediction Improves Bayesian Optimization
- URL: http://arxiv.org/abs/2112.04620v5
- Date: Tue, 25 Jun 2024 20:14:27 GMT
- Title: Online Calibrated and Conformal Prediction Improves Bayesian Optimization
- Authors: Shachi Deshpande, Charles Marx, Volodymyr Kuleshov,
- Abstract summary: This paper studies which uncertainties are needed in model-based decision-making and in Bayesian optimization.
Maintaining calibration, however, can be challenging when the data is non-stationary and depends on our actions.
We propose using simple algorithms based on online learning to provably maintain calibration on non-i.i.d. data.
- Score: 10.470326550507117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate uncertainty estimates are important in sequential model-based decision-making tasks such as Bayesian optimization. However, these estimates can be imperfect if the data violates assumptions made by the model (e.g., Gaussianity). This paper studies which uncertainties are needed in model-based decision-making and in Bayesian optimization, and argues that uncertainties can benefit from calibration -- i.e., an 80% predictive interval should contain the true outcome 80% of the time. Maintaining calibration, however, can be challenging when the data is non-stationary and depends on our actions. We propose using simple algorithms based on online learning to provably maintain calibration on non-i.i.d. data, and we show how to integrate these algorithms in Bayesian optimization with minimal overhead. Empirically, we find that calibrated Bayesian optimization converges to better optima in fewer steps, and we demonstrate improved performance on standard benchmark functions and hyperparameter optimization tasks.
Related papers
- When Does Optimizing a Proper Loss Yield Calibration? [12.684962113589515]
We show that any predictor with a local optimality satisfies smooth calibration.
We also show that the connection between local optimality and calibration error goes both ways.
arXiv Detail & Related papers (2023-05-30T05:53:34Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - Bayesian Optimization with Conformal Prediction Sets [44.565812181545645]
Conformal prediction is an uncertainty quantification method with coverage guarantees even for misspecified models.
We propose conformal Bayesian optimization, which directs queries towards regions of search space where the model predictions have guaranteed validity.
In many cases we find that query coverage can be significantly improved without harming sample-efficiency.
arXiv Detail & Related papers (2022-10-22T17:01:05Z) - Learning Prediction Intervals for Regression: Generalization and
Calibration [12.576284277353606]
We study the generation of prediction intervals in regression for uncertainty quantification.
We use a general learning theory to characterize the optimality-feasibility tradeoff that encompasses Lipschitz continuity and VC-subgraph classes.
We empirically demonstrate the strengths of our interval generation and calibration algorithms in terms of testing performances compared to existing benchmarks.
arXiv Detail & Related papers (2021-02-26T17:55:30Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
We explore the use of exact per-sample Hessian-vector products and gradients to construct self-tuning quadratics.
We prove that our model-based procedure converges in noisy gradient setting.
This is an interesting step for constructing self-tuning quadratics.
arXiv Detail & Related papers (2020-11-09T22:07:30Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
We show that a naive plug-in approach achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance.
Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
arXiv Detail & Related papers (2020-11-05T18:43:59Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
We introduce a framework that abstracts out the properties of recalibration problems under differential privacy constraints.
We also design a novel recalibration algorithm, accuracy temperature scaling, that outperforms prior work on private datasets.
arXiv Detail & Related papers (2020-08-21T18:43:37Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Uncertainty Quantification for Bayesian Optimization [12.433600693422235]
We propose a novel approach to assess the output uncertainty of Bayesian optimization algorithms, which proceeds by constructing confidence regions of the maximum point (or value) of the objective function.
Our theory provides a unified uncertainty quantification framework for all existing sequential sampling policies and stopping criteria.
arXiv Detail & Related papers (2020-02-04T22:48:07Z) - Better Boosting with Bandits for Online Learning [0.5543867614999908]
In learning, calibration is achieved by reserving part of the training data for training the calibrator function.
In the online setting a decision needs to be made on each round: shall the new example(s) be used to update the parameters of the ensemble or those of the calibrator.
We demonstrate superior performance to uncalibrated and naively-calibrated on-line boosting ensembles in terms of probability estimation.
arXiv Detail & Related papers (2020-01-16T22:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.