Bayesian Optimization with Conformal Prediction Sets
- URL: http://arxiv.org/abs/2210.12496v4
- Date: Tue, 12 Dec 2023 05:18:50 GMT
- Title: Bayesian Optimization with Conformal Prediction Sets
- Authors: Samuel Stanton, Wesley Maddox, and Andrew Gordon Wilson
- Abstract summary: Conformal prediction is an uncertainty quantification method with coverage guarantees even for misspecified models.
We propose conformal Bayesian optimization, which directs queries towards regions of search space where the model predictions have guaranteed validity.
In many cases we find that query coverage can be significantly improved without harming sample-efficiency.
- Score: 44.565812181545645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization is a coherent, ubiquitous approach to decision-making
under uncertainty, with applications including multi-arm bandits, active
learning, and black-box optimization. Bayesian optimization selects decisions
(i.e. objective function queries) with maximal expected utility with respect to
the posterior distribution of a Bayesian model, which quantifies reducible,
epistemic uncertainty about query outcomes. In practice, subjectively
implausible outcomes can occur regularly for two reasons: 1) model
misspecification and 2) covariate shift. Conformal prediction is an uncertainty
quantification method with coverage guarantees even for misspecified models and
a simple mechanism to correct for covariate shift. We propose conformal
Bayesian optimization, which directs queries towards regions of search space
where the model predictions have guaranteed validity, and investigate its
behavior on a suite of black-box optimization tasks and tabular ranking tasks.
In many cases we find that query coverage can be significantly improved without
harming sample-efficiency.
Related papers
- Robust Bayesian Optimization via Localized Online Conformal Prediction [37.549297668783254]
We introduce localized online conformal prediction-based Bayesian optimization (LOCBO)
LOCBO calibrates the GP model through localized online conformal prediction (CP)
We provide theoretical performance guarantees for LOCBO's iterates that hold for the unobserved objective function.
arXiv Detail & Related papers (2024-11-26T12:45:54Z) - Probabilistic Approach to Black-Box Binary Optimization with Budget Constraints: Application to Sensor Placement [0.0]
We present a fully probabilistic approach for solving binary optimization problems with black-box objective functions and with budget constraints.
In this work we develop conditional Bernoulli distributions to model the random variable conditioned by the total number of nonzero entries.
This approach is generally applicable to binary optimization problems with nonstochastic black-box objective functions and budget constraints.
arXiv Detail & Related papers (2024-06-09T15:37:28Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - The Perils of Learning Before Optimizing [16.97597806975415]
We show how prediction models can be learned end-to-end by differentiating through the optimization task.
We show that the performance gap between a two-stage and end-to-end approach is closely related to the emphprice of correlation concept in optimization.
arXiv Detail & Related papers (2021-06-18T20:43:47Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Stochastic Optimization Forests [60.523606291705214]
We show how to train forest decision policies by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm.
We show that our approximate splitting criteria can reduce running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize for every candidate split.
arXiv Detail & Related papers (2020-08-17T16:56:06Z) - Uncertainty Quantification for Bayesian Optimization [12.433600693422235]
We propose a novel approach to assess the output uncertainty of Bayesian optimization algorithms, which proceeds by constructing confidence regions of the maximum point (or value) of the objective function.
Our theory provides a unified uncertainty quantification framework for all existing sequential sampling policies and stopping criteria.
arXiv Detail & Related papers (2020-02-04T22:48:07Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
We study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples.
A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set.
We propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose.
arXiv Detail & Related papers (2020-01-19T12:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.