論文の概要: Differentially Private Ensemble Classifiers for Data Streams
- arxiv url: http://arxiv.org/abs/2112.04640v1
- Date: Thu, 9 Dec 2021 00:55:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-10 22:42:25.280397
- Title: Differentially Private Ensemble Classifiers for Data Streams
- Title(参考訳): データストリームのための微分プライベートアンサンブル分類器
- Authors: Lovedeep Gondara, Ke Wang, Ricardo Silva Carvalho
- Abstract要約: データ所有者のプライベート情報を保護しながら、データ特性(コンセプトドリフト)の進化に適応することは、オープンな課題である。
この問題に対して2つの特徴を持つ差分プライベートアンサンブル解を提案する。
これにより、テキストで区切られた多数のアンサンブル更新が、潜在的に終わらないデータストリームに対処できる。
テキストモデル非依存であり、事前訓練された差分的個人分類/回帰モデルをブラックボックスとして扱う。
- 参考スコア(独自算出の注目度): 3.9838304163788183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from continuous data streams via classification/regression is
prevalent in many domains. Adapting to evolving data characteristics (concept
drift) while protecting data owners' private information is an open challenge.
We present a differentially private ensemble solution to this problem with two
distinguishing features: it allows an \textit{unbounded} number of ensemble
updates to deal with the potentially never-ending data streams under a fixed
privacy budget, and it is \textit{model agnostic}, in that it treats any
pre-trained differentially private classification/regression model as a
black-box. Our method outperforms competitors on real-world and simulated
datasets for varying settings of privacy, concept drift, and data distribution.
- Abstract(参考訳): 分類/回帰による継続的データストリームからの学習は、多くのドメインで一般的です。
データ所有者のプライベート情報を保護しながら、データ特性(コンセプトドリフト)の進化に適応することは、オープンな課題である。
固定されたプライバシ予算の下で、潜在的に終わらないデータストリームを扱うために、 \textit{unbounded} の多数のアンサンブル更新を可能にすることと、事前訓練された差分的プライベートな分類/回帰モデルをブラックボックスとして扱うことを特徴とする、差分的プライベートなアンサンブルソリューションを提示する。
提案手法は,プライバシ設定,概念ドリフト,データ分散などにおいて,実世界およびシミュレーションデータセットの競合を上回っている。
関連論文リスト
- Federated Transfer Learning with Differential Privacy [21.50525027559563]
我々は、信頼された中央サーバを仮定することなく、各データセットに対するプライバシー保証を提供する、テキストフェデレーションによる差分プライバシーの概念を定式化する。
フェデレートされた差分プライバシは、確立されたローカルと中央の差分プライバシモデルの間の中間プライバシモデルであることを示す。
論文 参考訳(メタデータ) (2024-03-17T21:04:48Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
フェデレートラーニング(FL)は、プライバシ保護方法でモデルのトレーニングに分散プライベートデータを活用可能にする。
本稿では,FedGCと呼ばれる新しいFLフレームワークを提案する。
我々は、さまざまなベースライン、データセット、シナリオ、モダリティをカバーする、FedGCに関する体系的な実証的研究を行う。
論文 参考訳(メタデータ) (2023-12-10T07:38:56Z) - Mean Estimation with User-level Privacy under Data Heterogeneity [54.07947274508013]
異なるユーザーは、非常に多くの異なるデータポイントを持っているかもしれない。
すべてのユーザが同じディストリビューションからサンプルを採取していると仮定することはできない。
本研究では,データの分布と量の両方でユーザデータが異なる異質なユーザデータの単純なモデルを提案する。
論文 参考訳(メタデータ) (2023-07-28T23:02:39Z) - Data Analytics with Differential Privacy [0.0]
我々は分散データとストリーミングデータを解析するための差分プライベートアルゴリズムを開発した。
分散モデルでは、学習の特定の問題 -- 分散形式で -- がデータのグローバルモデルであると考えている。
私たちは、ストリーミングモデル、ユーザーレベルのパンプライバシに対して、最も強力なプライバシー保証の1つを提供しています。
論文 参考訳(メタデータ) (2023-07-20T17:43:29Z) - Learning across Data Owners with Joint Differential Privacy [13.531808240117645]
データ所有者は、共同微分プライバシーと呼ばれるプライバシー概念の下で、機械学習モデルを協調的に訓練する環境について検討する。
この設定では、各データ所有者のためにトレーニングされたモデルは、プライバシを考慮していない$j$のデータと、異なるプライバシを保証する他の所有者のデータを使用します。
本稿では,DP-SGDの変種であるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-25T05:11:40Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Differentially Private Multi-Party Data Release for Linear Regression [40.66319371232736]
Differentially Private (DP) データリリースは、データ対象のプライバシを損なうことなくデータを広める、有望なテクニックである。
本稿では、異なる利害関係者が同じデータ対象グループに属する不整合な属性セットを所有するマルチパーティ設定に焦点を当てる。
提案手法は,データセットサイズが増大する最適(プライベートでない)解に収束することを示す。
論文 参考訳(メタデータ) (2022-06-16T08:32:17Z) - Mixed Differential Privacy in Computer Vision [133.68363478737058]
AdaMixは、プライベートとパブリックの両方の画像データを使用して、ディープニューラルネットワーク分類器をトレーニングするための適応型微分プライベートアルゴリズムである。
プライベートデータを無視する数ショットあるいはゼロショットの学習ベースラインは、大規模なプライベートデータセットの微調整よりも優れています。
論文 参考訳(メタデータ) (2022-03-22T06:15:43Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
そこで我々はDP-Sinkhornを提案する。DP-Sinkhornは個人データからデータ分布を差分プライバシで学習するための新しいトランスポートベース生成手法である。
差分的にプライベートな生成モデルを訓練するための既存のアプローチとは異なり、我々は敵の目的に頼らない。
論文 参考訳(メタデータ) (2021-11-01T18:10:21Z) - Generating private data with user customization [9.415164800448853]
モバイルデバイスは大量のデータを生成、保存し、機械学習モデルを強化することができる。
しかし、このデータには、データのリリースを防止するデータ所有者特有のプライベート情報が含まれている可能性がある。
有用な情報を保持しつつ、ユーザ固有のプライベート情報とデータとの相関を小さくしたい。
論文 参考訳(メタデータ) (2020-12-02T19:13:58Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。