Asynchronous Semi-Decentralized Federated Edge Learning for
Heterogeneous Clients
- URL: http://arxiv.org/abs/2112.04737v1
- Date: Thu, 9 Dec 2021 07:39:31 GMT
- Title: Asynchronous Semi-Decentralized Federated Edge Learning for
Heterogeneous Clients
- Authors: Yuchang Sun and Jiawei Shao and Yuyi Mao and Jun Zhang
- Abstract summary: Federated edge learning (FEEL) has drawn much attention as a privacy-preserving distributed learning framework for mobile edge networks.
In this work, we investigate a novel semi-decentralized FEEL (SD-FEEL) architecture where multiple edge servers collaborate to incorporate more data from edge devices in training.
- Score: 3.983055670167878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated edge learning (FEEL) has drawn much attention as a
privacy-preserving distributed learning framework for mobile edge networks. In
this work, we investigate a novel semi-decentralized FEEL (SD-FEEL)
architecture where multiple edge servers collaborate to incorporate more data
from edge devices in training. Despite the low training latency enabled by fast
edge aggregation, the device heterogeneity in computational resources
deteriorates the efficiency. This paper proposes an asynchronous training
algorithm for SD-FEEL to overcome this issue, where edge servers can
independently set deadlines for the associated client nodes and trigger the
model aggregation. To deal with different levels of staleness, we design a
staleness-aware aggregation scheme and analyze its convergence performance.
Simulation results demonstrate the effectiveness of our proposed algorithm in
achieving faster convergence and better learning performance.
Related papers
- Split Federated Learning Over Heterogeneous Edge Devices: Algorithm and Optimization [7.013344179232109]
Split Learning (SL) is a promising collaborative machine learning approach, enabling resource-constrained devices to train models without sharing raw data.
Current SL algorithms face limitations in training efficiency and suffer from prolonged latency.
We propose the Heterogeneous Split Federated Learning framework, which allows resource-constrained clients to train their personalized client-side models in parallel.
arXiv Detail & Related papers (2024-11-21T07:46:01Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data.
FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training.
We propose TEASQ-Fed to exploit edge devices to asynchronously participate in the training process by actively applying for tasks.
arXiv Detail & Related papers (2023-12-23T07:47:07Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Stochastic Coded Federated Learning: Theoretical Analysis and Incentive
Mechanism Design [18.675244280002428]
We propose a novel FL framework named coded federated learning (SCFL) that leverages coded computing techniques.
In SCFL, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding noise to the projected local dataset.
We show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods.
arXiv Detail & Related papers (2022-11-08T09:58:36Z) - Contextual Model Aggregation for Fast and Robust Federated Learning in
Edge Computing [88.76112371510999]
Federated learning is a prime candidate for distributed machine learning at the network edge.
Existing algorithms face issues with slow convergence and/or robustness of performance.
We propose a contextual aggregation scheme that achieves the optimal context-dependent bound on loss reduction.
arXiv Detail & Related papers (2022-03-23T21:42:31Z) - Speeding up Heterogeneous Federated Learning with Sequentially Trained
Superclients [19.496278017418113]
Federated Learning (FL) allows training machine learning models in privacy-constrained scenarios by enabling the cooperation of edge devices without requiring local data sharing.
This approach raises several challenges due to the different statistical distribution of the local datasets and the clients' computational heterogeneity.
We propose FedSeq, a novel framework leveraging the sequential training of subgroups of heterogeneous clients, i.e. superclients, to emulate the centralized paradigm in a privacy-compliant way.
arXiv Detail & Related papers (2022-01-26T12:33:23Z) - Semi-Decentralized Federated Edge Learning with Data and Device
Heterogeneity [6.341508488542275]
Federated edge learning (FEEL) has attracted much attention as a privacy-preserving paradigm to effectively incorporate the distributed data at the network edge for training deep learning models.
In this paper, we investigate a novel framework of FEEL, namely semi-decentralized federated edge learning (SD-FEEL), where multiple edge servers are employed to collectively coordinate a large number of client nodes.
By exploiting the low-latency communication among edge servers for efficient model sharing, SD-FEEL can incorporate more training data, while enjoying much lower latency compared with conventional federated learning.
arXiv Detail & Related papers (2021-12-20T03:06:08Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Semi-Decentralized Federated Edge Learning for Fast Convergence on Non-IID Data [14.269800282001464]
Federated edge learning (FEEL) has emerged as an effective approach to reduce the large communication latency in Cloud-based machine learning solutions.
We investigate a novel framework of FEEL, namely semi-decentralized federated edge learning (SD-FEEL)
By allowing model aggregation across different edge clusters, SD-FEEL enjoys the benefit of FEEL in reducing the training latency.
arXiv Detail & Related papers (2021-04-26T16:11:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.