Semi-Decentralized Federated Edge Learning with Data and Device
Heterogeneity
- URL: http://arxiv.org/abs/2112.10313v3
- Date: Tue, 25 Apr 2023 15:16:47 GMT
- Title: Semi-Decentralized Federated Edge Learning with Data and Device
Heterogeneity
- Authors: Yuchang Sun and Jiawei Shao and Yuyi Mao and Jessie Hui Wang and Jun
Zhang
- Abstract summary: Federated edge learning (FEEL) has attracted much attention as a privacy-preserving paradigm to effectively incorporate the distributed data at the network edge for training deep learning models.
In this paper, we investigate a novel framework of FEEL, namely semi-decentralized federated edge learning (SD-FEEL), where multiple edge servers are employed to collectively coordinate a large number of client nodes.
By exploiting the low-latency communication among edge servers for efficient model sharing, SD-FEEL can incorporate more training data, while enjoying much lower latency compared with conventional federated learning.
- Score: 6.341508488542275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated edge learning (FEEL) has attracted much attention as a
privacy-preserving paradigm to effectively incorporate the distributed data at
the network edge for training deep learning models. Nevertheless, the limited
coverage of a single edge server results in an insufficient number of
participated client nodes, which may impair the learning performance. In this
paper, we investigate a novel framework of FEEL, namely semi-decentralized
federated edge learning (SD-FEEL), where multiple edge servers are employed to
collectively coordinate a large number of client nodes. By exploiting the
low-latency communication among edge servers for efficient model sharing,
SD-FEEL can incorporate more training data, while enjoying much lower latency
compared with conventional federated learning. We detail the training algorithm
for SD-FEEL with three main steps, including local model update, intra-cluster,
and inter-cluster model aggregations. The convergence of this algorithm is
proved on non-independent and identically distributed (non-IID) data, which
also helps to reveal the effects of key parameters on the training efficiency
and provides practical design guidelines. Meanwhile, the heterogeneity of edge
devices may cause the straggler effect and deteriorate the convergence speed of
SD-FEEL. To resolve this issue, we propose an asynchronous training algorithm
with a staleness-aware aggregation scheme for SD-FEEL, of which, the
convergence performance is also analyzed. The simulation results demonstrate
the effectiveness and efficiency of the proposed algorithms for SD-FEEL and
corroborate our analysis.
Related papers
- Faster Convergence on Heterogeneous Federated Edge Learning: An Adaptive Clustered Data Sharing Approach [27.86468387141422]
Federated Edge Learning (FEEL) emerges as a pioneering distributed machine learning paradigm for the 6G Hyper-Connectivity.
Current FEEL algorithms struggle with non-independent and non-identically distributed (non-IID) data, leading to elevated communication costs and compromised model accuracy.
We introduce a clustered data sharing framework, mitigating data heterogeneity by selectively sharing partial data from cluster heads to trusted associates.
Experiments show that the proposed framework facilitates FEEL on non-IID datasets with faster convergence rate and higher model accuracy in a limited communication environment.
arXiv Detail & Related papers (2024-06-14T07:22:39Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
This paper presents a novel split federated learning (SFL) framework that pairs clients with different computational resources.
A greedy algorithm is proposed by reconstructing the optimization of training latency as a graph edge selection problem.
Simulation results show the proposed method can significantly improve the FL training speed and achieve high performance.
arXiv Detail & Related papers (2023-08-26T11:10:54Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Asynchronous Semi-Decentralized Federated Edge Learning for
Heterogeneous Clients [3.983055670167878]
Federated edge learning (FEEL) has drawn much attention as a privacy-preserving distributed learning framework for mobile edge networks.
In this work, we investigate a novel semi-decentralized FEEL (SD-FEEL) architecture where multiple edge servers collaborate to incorporate more data from edge devices in training.
arXiv Detail & Related papers (2021-12-09T07:39:31Z) - Semi-Decentralized Federated Edge Learning for Fast Convergence on Non-IID Data [14.269800282001464]
Federated edge learning (FEEL) has emerged as an effective approach to reduce the large communication latency in Cloud-based machine learning solutions.
We investigate a novel framework of FEEL, namely semi-decentralized federated edge learning (SD-FEEL)
By allowing model aggregation across different edge clusters, SD-FEEL enjoys the benefit of FEEL in reducing the training latency.
arXiv Detail & Related papers (2021-04-26T16:11:47Z) - Sample-based and Feature-based Federated Learning via Mini-batch SSCA [18.11773963976481]
This paper investigates sample-based and feature-based federated optimization.
We show that the proposed algorithms can preserve data privacy through the model aggregation mechanism.
We also show that the proposed algorithms converge to Karush-Kuhn-Tucker points of the respective federated optimization problems.
arXiv Detail & Related papers (2021-04-13T08:23:46Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.