Experimental Demonstration of Neuromorphic Network with STT MTJ Synapses
- URL: http://arxiv.org/abs/2112.04749v1
- Date: Thu, 9 Dec 2021 08:11:47 GMT
- Title: Experimental Demonstration of Neuromorphic Network with STT MTJ Synapses
- Authors: Peng Zhou, Alexander J. Edwards, Fred B. Mancoff, Dimitri
Houssameddine, Sanjeev Aggarwal, Joseph S. Friedman
- Abstract summary: We present the first experimental demonstration of a neuromorphic network with magnetic tunnel junction (MTJ) synapses, which performs image recognition via vector-matrix multiplication.
We also simulate a large MTJ network performing MNIST handwritten digit recognition, demonstrating that MTJ crossbars can match memristor accuracy while providing increased precision, stability, and endurance.
- Score: 58.40902139823252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the first experimental demonstration of a neuromorphic network
with magnetic tunnel junction (MTJ) synapses, which performs image recognition
via vector-matrix multiplication. We also simulate a large MTJ network
performing MNIST handwritten digit recognition, demonstrating that MTJ
crossbars can match memristor accuracy while providing increased precision,
stability, and endurance.
Related papers
- An LSTM Feature Imitation Network for Hand Movement Recognition from sEMG Signals [2.632402517354116]
We propose utilizing a feature-imitating network (FIN) for closed-form temporal feature learning over a 300ms signal window on Ninapro DB2.
We then explore transfer learning capabilities by applying the pre-trained LSTM-FIN for tuning to a downstream hand movement recognition task.
arXiv Detail & Related papers (2024-05-23T21:45:15Z) - Learning and Controlling Silicon Dopant Transitions in Graphene using
Scanning Transmission Electron Microscopy [58.51812955462815]
We introduce a machine learning approach to determine the transition dynamics of silicon atoms on a single layer of carbon atoms.
The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition probabilities.
These learned transition dynamics are then leveraged to guide a single silicon atom throughout the lattice to pre-determined target destinations.
arXiv Detail & Related papers (2023-11-21T21:51:00Z) - Simulation of acquisition shifts in T2 Flair MR images to stress test AI
segmentation networks [0.0]
The approach simulates "acquisition shift derivatives" of MR images based on MR signal equations.
Experiments comprise the validation of the simulated images by real MR scans and example stress tests on state-of-the-art MS lesion segmentation networks.
arXiv Detail & Related papers (2023-11-03T13:10:55Z) - Neuromorphic Hebbian learning with magnetic tunnel junction synapses [41.92764939721262]
We propose and experimentally demonstrate neuromorphic networks that provide high-accuracy inference thanks to the binary resistance states of magnetic tunnel junctions (MTJs)
We performed the first demonstration of a neuromorphic network directly implemented with MTJ synapses, for both inference and spike-timing-dependent plasticity learning.
We also demonstrated through simulation that the proposed system for unsupervised Hebbian learning with STT-MTJ synapses can achieve competitive accuracies for MNIST handwritten digit recognition.
arXiv Detail & Related papers (2023-08-21T19:58:44Z) - Cross-modal Orthogonal High-rank Augmentation for RGB-Event
Transformer-trackers [58.802352477207094]
We explore the great potential of a pre-trained vision Transformer (ViT) to bridge the vast distribution gap between two modalities.
We propose a mask modeling strategy that randomly masks a specific modality of some tokens to enforce the interaction between tokens from different modalities interacting proactively.
Experiments demonstrate that our plug-and-play training augmentation techniques can significantly boost state-of-the-art one-stream and two trackersstream to a large extent in terms of both tracking precision and success rate.
arXiv Detail & Related papers (2023-07-09T08:58:47Z) - Stochastic Domain Wall-Magnetic Tunnel Junction Artificial Neurons for
Noise-Resilient Spiking Neural Networks [0.0]
We present a scaled DW-MTJ neuron with voltage-dependent probability firing.
validation accuracy during training was also shown to be comparable to an ideal integrate and fire device.
This work shows that DW-MTJ devices can be used to construct noise-resilient networks suitable for neuromorphic computing on the edge.
arXiv Detail & Related papers (2023-04-10T18:00:26Z) - Synchronous Unsupervised STDP Learning with Stochastic STT-MRAM
Switching [3.2894781846488494]
The use of resistance states for storing weights in neuromorphic systems is impeded by fabrication imprecision and analogity.
This paper proposes a synchronous spiking network with clocked circuits that perform unsupervised learning system.
The proposed system enables a single-layer network to achieve 90% accuracy on the MNIST dataset.
arXiv Detail & Related papers (2021-12-10T17:59:46Z) - A Transductive Multi-Head Model for Cross-Domain Few-Shot Learning [72.30054522048553]
We present a new method, Transductive Multi-Head Few-Shot learning (TMHFS), to address the Cross-Domain Few-Shot Learning challenge.
The proposed methods greatly outperform the strong baseline, fine-tuning, on four different target domains.
arXiv Detail & Related papers (2020-06-08T02:39:59Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.