High-Dimensional Stock Portfolio Trading with Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2112.04755v1
- Date: Thu, 9 Dec 2021 08:30:45 GMT
- Title: High-Dimensional Stock Portfolio Trading with Deep Reinforcement
Learning
- Authors: Uta Pigorsch and Sebastian Sch\"afer
- Abstract summary: The algorithm is capable of trading high-dimensional portfolios from cross-sectional datasets of any size.
We sequentially set up environments by sampling one asset for each environment while rewarding investments with the resulting asset's return and cash reservation with the average return of the set of assets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a Deep Reinforcement Learning algorithm for financial
portfolio trading based on Deep Q-learning. The algorithm is capable of trading
high-dimensional portfolios from cross-sectional datasets of any size which may
include data gaps and non-unique history lengths in the assets. We sequentially
set up environments by sampling one asset for each environment while rewarding
investments with the resulting asset's return and cash reservation with the
average return of the set of assets. This enforces the agent to strategically
assign capital to assets that it predicts to perform above-average. We apply
our methodology in an out-of-sample analysis to 48 US stock portfolio setups,
varying in the number of stocks from ten up to 500 stocks, in the selection
criteria and in the level of transaction costs. The algorithm on average
outperforms all considered passive and active benchmark investment strategies
by a large margin using only one hyperparameter setup for all portfolios.
Related papers
- Optimizing Portfolio Management and Risk Assessment in Digital Assets
Using Deep Learning for Predictive Analysis [5.015409508372732]
This paper introduces the DQN algorithm into asset management portfolios in a novel and straightforward way.
The performance greatly exceeds the benchmark, which fully proves the effectiveness of the DRL algorithm in portfolio management.
Since different assets are trained separately as environments, there may be a phenomenon of Q value drift among different assets.
arXiv Detail & Related papers (2024-02-25T05:23:57Z) - Onflow: an online portfolio allocation algorithm [0.0]
We introduce Onflow, a reinforcement learning technique that enables online optimization of portfolio allocation policies.
For log-normal assets, the strategy learned by Onflow, with transaction costs at zero, mimics Markowitz's optimal portfolio.
Onflow can remain efficient in regimes where other dynamical allocation techniques do not work anymore.
arXiv Detail & Related papers (2023-12-08T16:49:19Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Hedging Properties of Algorithmic Investment Strategies using Long
Short-Term Memory and Time Series models for Equity Indices [0.0]
This paper proposes a novel approach to hedging portfolios of risky assets when financial markets are affected by financial turmoils.
We employ four types of diverse theoretical models to generate price forecasts, which are then used to produce investment signals in single and complex AIS.
Our main conclusion is that LSTM-based strategies outperform the other models and that the best diversifier for the AIS built for the S&P 500 index is the AIS built for Bitcoin.
arXiv Detail & Related papers (2023-09-27T13:18:39Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - E2EAI: End-to-End Deep Learning Framework for Active Investing [123.52358449455231]
We propose an E2E that covers almost the entire process of factor investing through factor selection, factor combination, stock selection, and portfolio construction.
Experiments on real stock market data demonstrate the effectiveness of our end-to-end deep leaning framework in active investing.
arXiv Detail & Related papers (2023-05-25T10:27:07Z) - Asset Allocation: From Markowitz to Deep Reinforcement Learning [2.0305676256390934]
Asset allocation is an investment strategy that aims to balance risk and reward by constantly redistributing the portfolio's assets.
We conduct an extensive benchmark study to determine the efficacy and reliability of a number of optimization techniques.
arXiv Detail & Related papers (2022-07-14T14:44:04Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
Instead of selecting individual assets, we trade Exchange-Traded Funds (ETFs) of market indices to form a portfolio.
We compare our method with a wide range of algorithms with results showing that our model obtains the best performance over the testing period.
arXiv Detail & Related papers (2020-05-27T21:28:43Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.