E2EAI: End-to-End Deep Learning Framework for Active Investing
- URL: http://arxiv.org/abs/2305.16364v1
- Date: Thu, 25 May 2023 10:27:07 GMT
- Title: E2EAI: End-to-End Deep Learning Framework for Active Investing
- Authors: Zikai Wei, Bo Dai, Dahua Lin
- Abstract summary: We propose an E2E that covers almost the entire process of factor investing through factor selection, factor combination, stock selection, and portfolio construction.
Experiments on real stock market data demonstrate the effectiveness of our end-to-end deep leaning framework in active investing.
- Score: 123.52358449455231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active investing aims to construct a portfolio of assets that are believed to
be relatively profitable in the markets, with one popular method being to
construct a portfolio via factor-based strategies. In recent years, there have
been increasing efforts to apply deep learning to pursue "deep factors'' with
more active returns or promising pipelines for asset trends prediction.
However, the question of how to construct an active investment portfolio via an
end-to-end deep learning framework (E2E) is still open and rarely addressed in
existing works. In this paper, we are the first to propose an E2E that covers
almost the entire process of factor investing through factor selection, factor
combination, stock selection, and portfolio construction. Extensive experiments
on real stock market data demonstrate the effectiveness of our end-to-end deep
leaning framework in active investing.
Related papers
- Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
We study the use of deep reinforcement learning for responsible portfolio optimization by incorporating ESG states and objectives.
Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation.
arXiv Detail & Related papers (2024-03-25T12:04:03Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Embedding-based neural network for investment return prediction [5.114559245995975]
In recent years, deep learning are developing rapidly, and investment return prediction based on deep learning has become an emerging research topic.
This paper proposes an embedding-based dual branch approach to predict an investment's return.
The results demonstrate the superiority of our approach compared to Xgboost, Lightgbm and Catboost.
arXiv Detail & Related papers (2022-09-26T17:20:24Z) - Asset Allocation: From Markowitz to Deep Reinforcement Learning [2.0305676256390934]
Asset allocation is an investment strategy that aims to balance risk and reward by constantly redistributing the portfolio's assets.
We conduct an extensive benchmark study to determine the efficacy and reliability of a number of optimization techniques.
arXiv Detail & Related papers (2022-07-14T14:44:04Z) - Quantitative Stock Investment by Routing Uncertainty-Aware Trading
Experts: A Multi-Task Learning Approach [29.706515133374193]
We show that existing deep learning methods are sensitive to random seeds and network routers.
We propose a novel two-stage mixture-of-experts (MoE) framework for quantitative investment to mimic the efficient bottom-up trading strategy design workflow of successful trading firms.
AlphaMix significantly outperforms many state-of-the-art baselines in terms of four financial criteria.
arXiv Detail & Related papers (2022-06-07T08:58:00Z) - Precise Stock Price Prediction for Robust Portfolio Design from Selected
Sectors of the Indian Stock Market [0.0]
We have built the minimum variance portfolio and optimal risk portfolio for all the five chosen sectors.
A comparative study of minimum variance portfolio and optimal risk portfolio with equal weight portfolio is done by backtesting.
arXiv Detail & Related papers (2022-01-14T17:24:19Z) - High-Dimensional Stock Portfolio Trading with Deep Reinforcement
Learning [0.0]
The algorithm is capable of trading high-dimensional portfolios from cross-sectional datasets of any size.
We sequentially set up environments by sampling one asset for each environment while rewarding investments with the resulting asset's return and cash reservation with the average return of the set of assets.
arXiv Detail & Related papers (2021-12-09T08:30:45Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
We propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods.
To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts.
To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks.
arXiv Detail & Related papers (2021-02-15T07:22:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.