Small Oscillations of a Vortex Ring: Hamiltonian Formalism and
Quantization
- URL: http://arxiv.org/abs/2112.04859v1
- Date: Thu, 9 Dec 2021 12:16:40 GMT
- Title: Small Oscillations of a Vortex Ring: Hamiltonian Formalism and
Quantization
- Authors: S.V. Talalov
- Abstract summary: This article investigates small oscillations of a vortex ring with zero thickness that evolves under the Local Induction Equation (LIE)
We suggest the new approach to the Hamiltonian description of this dynamic system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article investigates small oscillations of a vortex ring with zero
thickness that evolves under the Local Induction Equation (LIE). We deduce the
differential equation that describes the dynamics of these oscillations. We
suggest the new approach to the Hamiltonian description of this dynamic system.
This approach is based on the extension of the set of dynamical variables by
adding the circulation $\Gamma$ as a dynamical variable. The constructed theory
is invariant under the transformations of the Galilei group. The appearance of
this group allows for a new viewpoint on the energy of a vortex filament with
zero thickness. We quantize this dynamical system and calculate the spectrum of
the energy and acceptable circulation values.
The physical states of the theory are constructed with help of coherent
states for the Heisenberg -Weyl group.
Related papers
- Entanglement dynamics from universal low-lying modes [0.0]
Information-theoretic quantities such as Renyi entropies show a remarkable universality in their late-time behaviour.
We provide evidence that in systems with no symmetries, the low-energy excitations of the Euclidean Hamiltonian are universally given by a gapped quasiparticle-like band.
This structure provides an understanding of entanglement dynamics in terms of a universal set of gapped low-lying modes.
arXiv Detail & Related papers (2024-07-23T18:00:16Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Vibrational response functions for multidimensional electronic
spectroscopy: from Duschinsky rotations to multimode squeezed coherent states [0.0]
We present an approach for the calculation of the response functions, based on the explicit derivation of the vibrational state.
The proposed approach potentially simplifies the numerical derivation of the response functions.
It substantiates in the considered models the intuitive interpretation of the response functions in terms of the vibrational wave packet dynamics.
arXiv Detail & Related papers (2023-06-15T06:41:09Z) - Towards quantum turbulence theory: A simple model with interaction of
the vortex loops [0.0]
The quantization scheme of this dynamical system is based on an earlier approach proposed by the author.
The application to the quantum turbulence theory is discussed.
arXiv Detail & Related papers (2022-07-12T09:25:31Z) - Thermal equilibrium in Gaussian dynamical semigroups [77.34726150561087]
We characterize all Gaussian dynamical semigroups in continuous variables quantum systems of n-bosonic modes which have a thermal Gibbs state as a stationary solution.
We also show that Alicki's quantum detailed-balance condition, based on a Gelfand-Naimark-Segal inner product, allows the determination of the temperature dependence of the diffusion and dissipation matrices.
arXiv Detail & Related papers (2022-07-11T19:32:17Z) - Strong Exciton-Vibrational Coupling in Molecular Assemblies. Dynamics
using the Polaron Transformation in HEOM Space [0.0]
We describe for the first time how the polaron transformation can be applied in the context of Frenkel exciton dynamics.
We derive hierarchical equations for polaron transformation in analogy to those for time propagation.
It makes a clear difference whether the polaron transformation is performed in the local or exciton basis.
arXiv Detail & Related papers (2021-03-25T07:38:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Environmentally Induced Entanglement -- Anomalous Behavior in the
Adiabatic Regime [0.0]
In a perturbative regime the influence of the environment on the system dynamics can effectively be described by a unitary contribution.
For resonant qubits, even in the adiabatic regime, the entanglement dynamics is still influenced by an environmentally induced Hamiltonian interaction.
arXiv Detail & Related papers (2020-06-08T08:39:03Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.