Entanglement dynamics from universal low-lying modes
- URL: http://arxiv.org/abs/2407.16763v1
- Date: Tue, 23 Jul 2024 18:00:16 GMT
- Title: Entanglement dynamics from universal low-lying modes
- Authors: Shreya Vardhan, Sanjay Moudgalya,
- Abstract summary: Information-theoretic quantities such as Renyi entropies show a remarkable universality in their late-time behaviour.
We provide evidence that in systems with no symmetries, the low-energy excitations of the Euclidean Hamiltonian are universally given by a gapped quasiparticle-like band.
This structure provides an understanding of entanglement dynamics in terms of a universal set of gapped low-lying modes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information-theoretic quantities such as Renyi entropies show a remarkable universality in their late-time behaviour across a variety of chaotic quantum many-body systems. Understanding how such common features emerge from very different microscopic dynamics remains an important challenge. In this work, we address this question in a class of Brownian models with random time-dependent Hamiltonians and a variety of different microscopic couplings. In any such model, the Lorentzian time-evolution of the $n$-th Renyi entropy can be mapped to evolution by a Euclidean Hamiltonian on 2$n$ copies of the system. We provide evidence that in systems with no symmetries, the low-energy excitations of the Euclidean Hamiltonian are universally given by a gapped quasiparticle-like band. The eigenstates in this band are plane waves of locally dressed domain walls between ferromagnetic ground states associated with two permutations in the symmetric group $S_n$. These excitations give rise to the membrane picture of entanglement growth, with the membrane tension determined by their dispersion relation. We establish this structure in a variety of cases using analytical perturbative methods and numerical variational techniques, and extract the associated dispersion relations and membrane tensions for the second and third Renyi entropies. For the third Renyi entropy, we argue that phase transitions in the membrane tension as a function of velocity are needed to ensure that physical constraints on the membrane tension are satisfied. Overall, this structure provides an understanding of entanglement dynamics in terms of a universal set of gapped low-lying modes, which may also apply to systems with time-independent Hamiltonians.
Related papers
- Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.
We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.
We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.
We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.
We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Page Curve and Entanglement Dynamics in an Interacting Fermionic Chain [0.0]
We investigate such Page-like behavior of the von Neumann entropy in a model of strongly correlated spinless fermions.
In the presence of interactions, a scaling analysis gives a non-zero critical time for the non-analyticity in the thermodynamic limit.
We present a physical picture explaining these findings.
arXiv Detail & Related papers (2025-02-05T19:22:48Z) - Quench dynamics of entanglement from crosscap states [0.0]
We study the dynamics of the bipartite entanglement entropy and mutual information from initial states which have long-range entanglement.
We find distinct patterns of behaviour depending on the type of dynamics and whether the system is integrable or chaotic.
arXiv Detail & Related papers (2024-12-05T14:27:13Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Unifying Emergent Hydrodynamics and Lindbladian Low Energy Spectra across Symmetries, Constraints, and Long-Range Interactions [0.0]
We identify emergent hydrodynamics governing charge transport in Brownian random circuits with various symmetries, constraints, and ranges of interactions.
Our approach provides a general and versatile framework to qualitatively understand the dynamics of conserved operators under random unitary time evolution.
arXiv Detail & Related papers (2023-04-25T17:59:03Z) - Spectral form factor in a minimal bosonic model of many-body quantum
chaos [1.3793594968500609]
We study spectral form factor in periodically-kicked bosonic chains.
We numerically find a nontrivial systematic system-size dependence of the Thouless time.
arXiv Detail & Related papers (2022-03-10T15:56:24Z) - Emergent hydrodynamics in a strongly interacting dipolar spin ensemble [0.12781808516917792]
We introduce a hybrid solid-state spin platform, where the underlying disordered, dipolar quantum Hamiltonian gives rise to the emergence of unconventional spin diffusion.
By tuning the underlying parameters within the spin Hamiltonian via a combination of static and driven fields, we demonstrate direct control over the emergent spin diffusion coefficient.
arXiv Detail & Related papers (2021-04-15T18:00:01Z) - Particle mixing and the emergence of classicality: A
spontaneous-collapse-model view [0.0]
We show that spontaneous collapse can induce the decay dynamics in both quantum state and master equations.
We show that the decay property of a flavor-oscillating system is intimately connected to the time (a)symmetry of the noise field underlying the collapse mechanism.
arXiv Detail & Related papers (2020-08-25T16:07:59Z) - The entanglement membrane in chaotic many-body systems [0.0]
In certain analytically-tractable quantum chaotic systems, the calculation of out-of-time-order correlation functions, entanglement entropies after a quench, and other related dynamical observables, reduces to an effective theory of an entanglement membrane'' in spacetime.
We show here how to make sense of this membrane in more realistic models, which do not involve an average over random unitaries.
arXiv Detail & Related papers (2019-12-27T19:01:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.