論文の概要: PRA-Net: Point Relation-Aware Network for 3D Point Cloud Analysis
- arxiv url: http://arxiv.org/abs/2112.04903v1
- Date: Thu, 9 Dec 2021 13:24:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-10 14:57:25.151379
- Title: PRA-Net: Point Relation-Aware Network for 3D Point Cloud Analysis
- Title(参考訳): pra-net:3dポイントクラウド解析のためのポイントリレーションアウェアネットワーク
- Authors: Silin Cheng, Xiwu Chen, Xinwei He, Zhe Liu, Xiang Bai
- Abstract要約: 我々はポイント関係認識ネットワーク(PRA-Net)という新しいフレームワークを提案する。
領域内構造学習(ISL)モジュールと領域間関係学習(IRL)モジュールで構成されている。
形状分類,キーポイント推定,部分セグメンテーションを含む複数の3次元ベンチマーク実験により,PRA-Netの有効性と性能が検証された。
- 参考スコア(独自算出の注目度): 56.91758845045371
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning intra-region contexts and inter-region relations are two effective
strategies to strengthen feature representations for point cloud analysis.
However, unifying the two strategies for point cloud representation is not
fully emphasized in existing methods. To this end, we propose a novel framework
named Point Relation-Aware Network (PRA-Net), which is composed of an
Intra-region Structure Learning (ISL) module and an Inter-region Relation
Learning (IRL) module. The ISL module can dynamically integrate the local
structural information into the point features, while the IRL module captures
inter-region relations adaptively and efficiently via a differentiable region
partition scheme and a representative point-based strategy. Extensive
experiments on several 3D benchmarks covering shape classification, keypoint
estimation, and part segmentation have verified the effectiveness and the
generalization ability of PRA-Net. Code will be available at
https://github.com/XiwuChen/PRA-Net .
- Abstract(参考訳): 地域内コンテキストと地域間関係の学習は、ポイントクラウド分析のための特徴表現を強化するための2つの効果的な戦略である。
しかし、ポイントクラウド表現のための2つの戦略を統合することは、既存の手法では完全に強調されない。
そこで本研究では,地域内構造学習 (ISL) モジュールと地域間関係学習 (IRL) モジュールからなる新しいフレームワークであるPoint Relation-Aware Network (PRA-Net) を提案する。
ISLモジュールは、局所的な構造情報をポイント特徴に動的に統合し、IRLモジュールは、微分可能な領域分割スキームと代表点ベースの戦略により、地域間関係を適応的かつ効率的にキャプチャする。
PRA-Netの有効性と一般化能力を検証するために, 形状分類, キーポイント推定, 部分分割を含む複数の3次元ベンチマーク実験を行った。
コードはhttps://github.com/XiwuChen/PRA-Netで入手できる。
関連論文リスト
- Region-Enhanced Feature Learning for Scene Semantic Segmentation [19.20735517821943]
計算負担を軽減するために,細粒度点やボクセルの代わりに点雲の中間表現として領域を用いることを提案する。
本研究では,セマンティック空間領域抽出段階と領域依存モデリング段階からなるRFEモジュールを設計する。
我々のREFL-NetはScanNetV2で1.8% mIoUゲイン、S3DISデータセットで1.7% mIoUゲインを無視可能な計算コストで達成している。
論文 参考訳(メタデータ) (2023-04-15T06:35:06Z) - Local region-learning modules for point cloud classification [0.0]
本研究では,各中心点に対する適切なシフトを推定し,各局所領域の半径を変化させる2つの局所学習モジュールを提案する。
どちらのモジュールも独立して、PointNet++とPointCNNオブジェクト分類アーキテクチャに統合しました。
ShapeNetデータセットを用いた実験の結果,モジュールは3次元CADモデルにも有効であることがわかった。
論文 参考訳(メタデータ) (2023-03-30T12:45:46Z) - PointCMC: Cross-Modal Multi-Scale Correspondences Learning for Point
Cloud Understanding [0.875967561330372]
自己教師付きポイントクラウド表現学習のためのマルチスケール対応をモダリティ間でモデル化するクロスモーダル手法
ポイントCMCは,(1) 局所的局所幾何学的特徴を最適化して局所的対応を学習する局所的-局所的(L2L)モジュール,(2) 局所的-グローバル的(L2G)モジュール,(3) 局所的-グローバル的(G2G)モジュール,(3) 局所的雲と画像間の協調的大域的コントラスト損失を利用して高レベルの意味的対応を学習するグローバル的(G2G)モジュールから構成される。
論文 参考訳(メタデータ) (2022-11-22T06:08:43Z) - Adaptive Edge-to-Edge Interaction Learning for Point Cloud Analysis [118.30840667784206]
ポイントクラウドデータ処理の大きな問題は、ローカルリージョンから有用な情報を抽出することだ。
従来の研究は、局所的な形状情報を符号化する地域におけるエッジ間の関係を無視していた。
本稿では,Adaptive Edge-to-Edge Interaction Learningモジュールを提案する。
論文 参考訳(メタデータ) (2022-11-20T07:10:14Z) - LCPFormer: Towards Effective 3D Point Cloud Analysis via Local Context
Propagation in Transformers [60.51925353387151]
本稿では,近隣地域間のメッセージパッシングを活用するために,LCP (Local Context Propagation) という新しいモジュールを提案する。
隣接するローカル領域の重複点を仲介として使用した後、異なるローカルリージョンからの共有ポイントの特徴を再重み付けし、その後、次のレイヤに渡す。
提案手法は, 異なるタスクに適用可能であり, 3次元形状分類や高密度予測タスクを含むベンチマークにおいて, 様々なトランスフォーマーベースの手法より優れる。
論文 参考訳(メタデータ) (2022-10-23T15:43:01Z) - Multi-scale Network with Attentional Multi-resolution Fusion for Point
Cloud Semantic Segmentation [2.964101313270572]
ローカルおよびグローバルなマルチスケール情報を集約する総合的なポイントクラウドセマンティックセマンティックセマンティクスネットワークを提案する。
点の局所的な形状を効果的に学習するアングル相関点畳み込みモジュールを提案する。
第3に、2Dイメージビジョンタスクのパフォーマンスに優れたHRNetにインスパイアされた私たちは、ポイントクラウド用にカスタマイズされたHRNetを構築し、グローバルなマルチスケールコンテキストを学習します。
論文 参考訳(メタデータ) (2022-06-27T21:03:33Z) - An Entropy-guided Reinforced Partial Convolutional Network for Zero-Shot
Learning [77.72330187258498]
エントロピー誘導強化部分畳み込みネットワーク(ERPCNet)を提案する。
ERPCNetは、人間のアノテーションのない意味的関連性と視覚的相関に基づいて、局所性を抽出し、集約する。
グローバルな協力的局所性を動的に発見するだけでなく、ポリシー勾配最適化のためにより高速に収束する。
論文 参考訳(メタデータ) (2021-11-03T11:13:13Z) - Global Aggregation then Local Distribution for Scene Parsing [99.1095068574454]
提案手法は,エンドツーエンドのトレーニング可能なブロックとしてモジュール化され,既存のセマンティックセグメンテーションネットワークに容易に接続可能であることを示す。
私たちのアプローチでは、Cityscapes、ADE20K、Pascal Context、Camvid、COCO-stuffといった主要なセマンティックセグメンテーションベンチマークに基づいて、新しい最先端の技術を構築できます。
論文 参考訳(メタデータ) (2021-07-28T03:46:57Z) - LRC-Net: Learning Discriminative Features on Point Clouds by Encoding
Local Region Contexts [65.79931333193016]
本稿では,LRC-Net(Local-Region-Context Network)を提案する。
LRC-Netは、局所領域内および周辺領域間の微粒なコンテキストを同時に符号化する。
その結果, LRC-Netは形状分類や形状分割の応用において最先端の手法と競合することがわかった。
論文 参考訳(メタデータ) (2020-03-18T14:34:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。