Contour Integral-based Quantum Algorithm for Estimating Matrix
Eigenvalue Density
- URL: http://arxiv.org/abs/2112.05395v1
- Date: Fri, 10 Dec 2021 08:58:44 GMT
- Title: Contour Integral-based Quantum Algorithm for Estimating Matrix
Eigenvalue Density
- Authors: Yasunori Futamura, Xiucai Ye, Tetsuya Sakurai
- Abstract summary: We propose a quantum algorithm for computing the eigenvalue density in a given interval.
The eigenvalue count in a given interval is derived as the probability of observing a bit pattern in a fraction of the qubits of the output state.
- Score: 5.962184741057505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The eigenvalue density of a matrix plays an important role in various types
of scientific computing such as electronic-structure calculations. In this
paper, we propose a quantum algorithm for computing the eigenvalue density in a
given interval. Our quantum algorithm is based on a method that approximates
the eigenvalue counts by applying the numerical contour integral and the
stochastic trace estimator applied to a matrix involving resolvent matrices. As
components of our algorithm, the HHL solver is applied to an augmented linear
system of the resolvent matrices, and the quantum Fourier transform (QFT) is
adopted to represent the operation of the numerical contour integral. To reduce
the size of the augmented system, we exploit a certain symmetry of the
numerical integration. We also introduce a permutation formed by CNOT gates to
make the augmented system solution consistent with the QFT input. The
eigenvalue count in a given interval is derived as the probability of observing
a bit pattern in a fraction of the qubits of the output state.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states.
It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems.
The potential of our method is demonstrated by numerical calculations in two chiral spin liquids.
arXiv Detail & Related papers (2024-08-02T10:15:26Z) - Quantum eigenvalue processing [0.0]
Problems in linear algebra can be solved on a quantum computer by processing eigenvalues of the non-normal input matrices.
We present a Quantum EigenValue Transformation (QEVT) framework for applying arbitrary transformations on eigenvalues of block-encoded non-normal operators.
We also present a Quantum EigenValue Estimation (QEVE) algorithm for operators with real spectra.
arXiv Detail & Related papers (2024-01-11T19:49:31Z) - Using Variational Eigensolvers on Low-End Hardware to Find the Ground
State Energy of Simple Molecules [0.0]
Key properties of physical systems can be described by the eigenvalues of matrices that represent the system.
Computational algorithms that determine the eigenvalues of these matrices exist, but they generally suffer from a loss of performance as the matrix grows in size.
This process can be expanded to quantum computation to find the eigenvalues with better performance than the classical algorithms.
arXiv Detail & Related papers (2023-10-29T18:36:18Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - A quantum algorithm for solving eigenproblem of the Laplacian matrix of
a fully connected weighted graph [4.045204834863644]
We propose an efficient quantum algorithm to solve the eigenproblem of the Laplacian matrix of a fully connected weighted graph.
Specifically, we adopt the optimal Hamiltonian simulation technique based on the block-encoding framework.
We also show that our algorithm can be extended to solve the eigenproblem of symmetric (non-symmetric) normalized Laplacian matrix.
arXiv Detail & Related papers (2022-03-28T02:24:08Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - Quantum algorithms for the generalized eigenvalue problem [6.111964049119244]
generalized eigenvalue (GE) problems are of particular importance in various areas of science engineering and machine learning.
We present a variational quantum algorithm for finding the desired generalized eigenvalue of the GE problem, $mathcalA|psirangle=lambdamathcalB|psirangle$, by choosing suitable loss functions.
We numerically implement our algorithms to conduct a 2-qubit simulation and successfully find the generalized eigenvalues of the matrix pencil $(mathcalA,,mathcalB)$
arXiv Detail & Related papers (2021-12-05T12:12:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.