DronePose: The identification, segmentation, and orientation detection
of drones via neural networks
- URL: http://arxiv.org/abs/2112.05488v1
- Date: Fri, 10 Dec 2021 12:34:53 GMT
- Title: DronePose: The identification, segmentation, and orientation detection
of drones via neural networks
- Authors: Stirling Scholes, Alice Ruget, German Mora-Martin, Feng Zhu, Istvan
Gyongy, and Jonathan Leach
- Abstract summary: We present a CNN using a decision tree and ensemble structure to fully characterise drones in flight.
Our system determines the drone type, orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts.
We also provide a computer model for the rapid generation of large quantities of accurately labelled photo-realistic training data.
- Score: 3.161871054978445
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growing ubiquity of drones has raised concerns over the ability of
traditional air-space monitoring technologies to accurately characterise such
vehicles. Here, we present a CNN using a decision tree and ensemble structure
to fully characterise drones in flight. Our system determines the drone type,
orientation (in terms of pitch, roll, and yaw), and performs segmentation to
classify different body parts (engines, body, and camera). We also provide a
computer model for the rapid generation of large quantities of accurately
labelled photo-realistic training data and demonstrate that this data is of
sufficient fidelity to allow the system to accurately characterise real drones
in flight. Our network will provide a valuable tool in the image processing
chain where it may build upon existing drone detection technologies to provide
complete drone characterisation over wide areas.
Related papers
- Drone-type-Set: Drone types detection benchmark for drone detection and tracking [0.6294091730968154]
In this paper, we provide a dataset of various drones as well as a comparison of recognized object detection models.
The experimental results of different models are provided along with a description of each method.
arXiv Detail & Related papers (2024-05-16T18:56:46Z) - C2FDrone: Coarse-to-Fine Drone-to-Drone Detection using Vision Transformer Networks [23.133250476580038]
A vision-based drone-to-drone detection system is crucial for various applications like collision avoidance, countering hostile drones, and search-and-rescue operations.
detecting drones presents unique challenges, including small object sizes, distortion, and real-time processing requirements.
We propose a novel coarse-to-fine detection strategy based on vision transformers.
arXiv Detail & Related papers (2024-04-30T05:51:21Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
Drone-to-drone detection using visual feed has crucial applications, such as detecting drone collisions, detecting drone attacks, or coordinating flight with other drones.
Existing methods are computationally costly, follow non-end-to-end optimization, and have complex multi-stage pipelines, making them less suitable for real-time deployment on edge devices.
We propose a simple yet effective framework, itTransVisDrone, that provides an end-to-end solution with higher computational efficiency.
arXiv Detail & Related papers (2022-10-16T03:05:13Z) - A dataset for multi-sensor drone detection [67.75999072448555]
The use of small and remotely controlled unmanned aerial vehicles (UAVs) has increased in recent years.
Most studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the dataset.
We contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files.
arXiv Detail & Related papers (2021-11-02T20:52:03Z) - Scarce Data Driven Deep Learning of Drones via Generalized Data
Distribution Space [12.377024173799631]
We show how understanding the general distribution of the drone data via a Generative Adversarial Network (GAN) can allow us to acquire missing data to achieve rapid and more accurate learning.
We demonstrate our results on a drone image dataset, which contains both real drone images as well as simulated images from computer-aided design.
arXiv Detail & Related papers (2021-08-18T17:07:32Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
This paper attempts to address the problem of drones detection from other flying drones variations.
The erratic movement of the source and target drones, small size, arbitrary shape, large intensity, and occlusion make this problem quite challenging.
To handle this, instead of using region-proposal based methods, we propose to use a two-stage segmentation-based approach.
arXiv Detail & Related papers (2021-03-31T17:43:31Z) - Real-Time Drone Detection and Tracking With Visible, Thermal and
Acoustic Sensors [66.4525391417921]
A thermal infrared camera is shown to be a feasible solution to the drone detection task.
The detector performance as a function of the sensor-to-target distance is also investigated.
A novel video dataset containing 650 annotated infrared and visible videos of drones, birds, airplanes and helicopters is also presented.
arXiv Detail & Related papers (2020-07-14T23:06:42Z) - University-1652: A Multi-view Multi-source Benchmark for Drone-based
Geo-localization [87.74121935246937]
We introduce a new multi-view benchmark for drone-based geo-localization, named University-1652.
University-1652 contains data from three platforms, i.e., synthetic drones, satellites and ground cameras of 1,652 university buildings around the world.
Experiments show that University-1652 helps the model to learn the viewpoint-invariant features and also has good generalization ability in the real-world scenario.
arXiv Detail & Related papers (2020-02-27T15:24:15Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
This paper presents a review of object detection and tracking datasets and benchmarks, and discusses the challenges of collecting large-scale drone-based object detection and tracking datasets with manual annotations.
We describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South.
We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions.
arXiv Detail & Related papers (2020-01-16T00:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.