Drone-type-Set: Drone types detection benchmark for drone detection and tracking
- URL: http://arxiv.org/abs/2405.10398v1
- Date: Thu, 16 May 2024 18:56:46 GMT
- Title: Drone-type-Set: Drone types detection benchmark for drone detection and tracking
- Authors: Kholoud AlDosari, AIbtisam Osman, Omar Elharrouss, Somaya AlMaadeed, Mohamed Zied Chaari,
- Abstract summary: In this paper, we provide a dataset of various drones as well as a comparison of recognized object detection models.
The experimental results of different models are provided along with a description of each method.
- Score: 0.6294091730968154
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Unmanned Aerial Vehicles (UAVs) market has been significantly growing and Considering the availability of drones at low-cost prices the possibility of misusing them, for illegal purposes such as drug trafficking, spying, and terrorist attacks posing high risks to national security, is rising. Therefore, detecting and tracking unauthorized drones to prevent future attacks that threaten lives, facilities, and security, become a necessity. Drone detection can be performed using different sensors, while image-based detection is one of them due to the development of artificial intelligence techniques. However, knowing unauthorized drone types is one of the challenges due to the lack of drone types datasets. For that, in this paper, we provide a dataset of various drones as well as a comparison of recognized object detection models on the proposed dataset including YOLO algorithms with their different versions, like, v3, v4, and v5 along with the Detectronv2. The experimental results of different models are provided along with a description of each method. The collected dataset can be found in https://drive.google.com/drive/folders/1EPOpqlF4vG7hp4MYnfAecVOsdQ2JwBEd?usp=share_link
Related papers
- DroBoost: An Intelligent Score and Model Boosting Method for Drone Detection [1.2564343689544843]
Drone detection is a challenging object detection task where visibility conditions and quality of the images may be unfavorable.
Our work improves on the previous approach by combining several improvements.
The proposed technique won 1st Place in the Drone vs. Bird Challenge.
arXiv Detail & Related papers (2024-06-30T20:49:56Z) - Sound-based drone fault classification using multitask learning [7.726132010393797]
This paper proposes a sound-based deep neural network (DNN) fault classifier and drone sound dataset.
The dataset was constructed by collecting the operating sounds of drones from microphones mounted on three different drones in an anechoic chamber.
Using the acquired dataset, we train a classifier, 1DCNN-ResNet, that classifies the types of mechanical faults and their locations from short-time input waveforms.
arXiv Detail & Related papers (2023-04-23T17:55:40Z) - Unauthorized Drone Detection: Experiments and Prototypes [0.8294692832460543]
We present a novel encryption-based drone detection scheme that uses a two-stage verification of the drone's received signal strength indicator ( RSSI) and the encryption key generated from the drone's position coordinates.
arXiv Detail & Related papers (2022-12-02T20:43:29Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
Drone-to-drone detection using visual feed has crucial applications, such as detecting drone collisions, detecting drone attacks, or coordinating flight with other drones.
Existing methods are computationally costly, follow non-end-to-end optimization, and have complex multi-stage pipelines, making them less suitable for real-time deployment on edge devices.
We propose a simple yet effective framework, itTransVisDrone, that provides an end-to-end solution with higher computational efficiency.
arXiv Detail & Related papers (2022-10-16T03:05:13Z) - Track Boosting and Synthetic Data Aided Drone Detection [0.0]
Our method approaches the drone detection problem by fine-tuning a YOLOv5 model with real and synthetically generated data.
Our results indicate that augmenting the real data with an optimal subset of synthetic data can increase the performance.
arXiv Detail & Related papers (2021-11-24T10:16:27Z) - A dataset for multi-sensor drone detection [67.75999072448555]
The use of small and remotely controlled unmanned aerial vehicles (UAVs) has increased in recent years.
Most studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the dataset.
We contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files.
arXiv Detail & Related papers (2021-11-02T20:52:03Z) - Scarce Data Driven Deep Learning of Drones via Generalized Data
Distribution Space [12.377024173799631]
We show how understanding the general distribution of the drone data via a Generative Adversarial Network (GAN) can allow us to acquire missing data to achieve rapid and more accurate learning.
We demonstrate our results on a drone image dataset, which contains both real drone images as well as simulated images from computer-aided design.
arXiv Detail & Related papers (2021-08-18T17:07:32Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
This paper attempts to address the problem of drones detection from other flying drones variations.
The erratic movement of the source and target drones, small size, arbitrary shape, large intensity, and occlusion make this problem quite challenging.
To handle this, instead of using region-proposal based methods, we propose to use a two-stage segmentation-based approach.
arXiv Detail & Related papers (2021-03-31T17:43:31Z) - Real-Time Drone Detection and Tracking With Visible, Thermal and
Acoustic Sensors [66.4525391417921]
A thermal infrared camera is shown to be a feasible solution to the drone detection task.
The detector performance as a function of the sensor-to-target distance is also investigated.
A novel video dataset containing 650 annotated infrared and visible videos of drones, birds, airplanes and helicopters is also presented.
arXiv Detail & Related papers (2020-07-14T23:06:42Z) - University-1652: A Multi-view Multi-source Benchmark for Drone-based
Geo-localization [87.74121935246937]
We introduce a new multi-view benchmark for drone-based geo-localization, named University-1652.
University-1652 contains data from three platforms, i.e., synthetic drones, satellites and ground cameras of 1,652 university buildings around the world.
Experiments show that University-1652 helps the model to learn the viewpoint-invariant features and also has good generalization ability in the real-world scenario.
arXiv Detail & Related papers (2020-02-27T15:24:15Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
This paper presents a review of object detection and tracking datasets and benchmarks, and discusses the challenges of collecting large-scale drone-based object detection and tracking datasets with manual annotations.
We describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South.
We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions.
arXiv Detail & Related papers (2020-01-16T00:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.