A Framework for Fairness: A Systematic Review of Existing Fair AI
Solutions
- URL: http://arxiv.org/abs/2112.05700v1
- Date: Fri, 10 Dec 2021 17:51:20 GMT
- Title: A Framework for Fairness: A Systematic Review of Existing Fair AI
Solutions
- Authors: Brianna Richardson, Juan E. Gilbert
- Abstract summary: A large portion of fairness research has gone to producing tools that machine learning practitioners can use to audit for bias while designing their algorithms.
There is a lack of application of these fairness solutions in practice.
This review provides an in-depth summary of the algorithmic bias issues that have been defined and the fairness solution space that has been proposed.
- Score: 4.594159253008448
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In a world of daily emerging scientific inquisition and discovery, the
prolific launch of machine learning across industries comes to little surprise
for those familiar with the potential of ML. Neither so should the congruent
expansion of ethics-focused research that emerged as a response to issues of
bias and unfairness that stemmed from those very same applications. Fairness
research, which focuses on techniques to combat algorithmic bias, is now more
supported than ever before. A large portion of fairness research has gone to
producing tools that machine learning practitioners can use to audit for bias
while designing their algorithms. Nonetheless, there is a lack of application
of these fairness solutions in practice. This systematic review provides an
in-depth summary of the algorithmic bias issues that have been defined and the
fairness solution space that has been proposed. Moreover, this review provides
an in-depth breakdown of the caveats to the solution space that have arisen
since their release and a taxonomy of needs that have been proposed by machine
learning practitioners, fairness researchers, and institutional stakeholders.
These needs have been organized and addressed to the parties most influential
to their implementation, which includes fairness researchers, organizations
that produce ML algorithms, and the machine learning practitioners themselves.
These findings can be used in the future to bridge the gap between
practitioners and fairness experts and inform the creation of usable fair ML
toolkits.
Related papers
- Whither Bias Goes, I Will Go: An Integrative, Systematic Review of Algorithmic Bias Mitigation [1.0470286407954037]
Concerns have been raised that machine learning (ML) models may be biased and perpetuate or exacerbate inequality.
We present a four-stage model of developing ML assessments and applying bias mitigation methods.
arXiv Detail & Related papers (2024-10-21T02:32:14Z) - Measuring, Interpreting, and Improving Fairness of Algorithms using
Causal Inference and Randomized Experiments [8.62694928567939]
We present an algorithm-agnostic framework (MIIF) to Measure, Interpret, and Improve the Fairness of an algorithmic decision.
We measure the algorithm bias using randomized experiments, which enables the simultaneous measurement of disparate treatment, disparate impact, and economic value.
We also develop an explainable machine learning model which accurately interprets and distills the beliefs of a blackbox algorithm.
arXiv Detail & Related papers (2023-09-04T19:45:18Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Developing a Philosophical Framework for Fair Machine Learning: Lessons
From The Case of Algorithmic Collusion [0.0]
As machine learning algorithms are applied in new contexts the harms and injustices that result are qualitatively different.
The existing research paradigm in machine learning which develops metrics and definitions of fairness cannot account for these qualitatively different types of injustice.
I propose an ethical framework for researchers and practitioners in machine learning seeking to develop and apply fairness metrics.
arXiv Detail & Related papers (2022-07-05T16:21:56Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
We review the concepts and notions of fairness that were put forward in the area in the recent past.
We present an overview of how research in this field is currently operationalized.
Overall, our analysis of recent works points to certain research gaps.
arXiv Detail & Related papers (2022-05-23T08:34:25Z) - Fair Representation Learning for Heterogeneous Information Networks [35.80367469624887]
We propose a comprehensive set of de-biasing methods for fair HINs representation learning.
We study the behavior of these algorithms, especially their capability in balancing the trade-off between fairness and prediction accuracy.
We evaluate the performance of the proposed methods in an automated career counseling application.
arXiv Detail & Related papers (2021-04-18T08:28:18Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
The use of sophisticated statistical models that influence decisions in domains of high societal relevance is on the rise.
Many governments, institutions, and companies are reluctant to their adoption as their output is often difficult to explain in human-interpretable ways.
Recently, the academic literature has proposed a substantial amount of methods for providing interpretable explanations to machine learning models.
arXiv Detail & Related papers (2021-04-09T01:46:34Z) - BeFair: Addressing Fairness in the Banking Sector [54.08949958349055]
We present the initial results of an industrial open innovation project in the banking sector.
We propose a general roadmap for fairness in ML and the implementation of a toolkit called BeFair that helps to identify and mitigate bias.
arXiv Detail & Related papers (2021-02-03T16:37:10Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z) - Getting Fairness Right: Towards a Toolbox for Practitioners [2.4364387374267427]
The potential risk of AI systems unintentionally embedding and reproducing bias has attracted the attention of machine learning practitioners and society at large.
This paper proposes to draft a toolbox which helps practitioners to ensure fair AI practices.
arXiv Detail & Related papers (2020-03-15T20:53:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.