Machine Unlearning: A Survey
- URL: http://arxiv.org/abs/2306.03558v1
- Date: Tue, 6 Jun 2023 10:18:36 GMT
- Title: Machine Unlearning: A Survey
- Authors: Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, Philip S. Yu
- Abstract summary: A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
- Score: 56.79152190680552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has attracted widespread attention and evolved into an
enabling technology for a wide range of highly successful applications, such as
intelligent computer vision, speech recognition, medical diagnosis, and more.
Yet a special need has arisen where, due to privacy, usability, and/or the
right to be forgotten, information about some specific samples needs to be
removed from a model, called machine unlearning. This emerging technology has
drawn significant interest from both academics and industry due to its
innovation and practicality. At the same time, this ambitious problem has led
to numerous research efforts aimed at confronting its challenges. To the best
of our knowledge, no study has analyzed this complex topic or compared the
feasibility of existing unlearning solutions in different kinds of scenarios.
Accordingly, with this survey, we aim to capture the key concepts of unlearning
techniques. The existing solutions are classified and summarized based on their
characteristics within an up-to-date and comprehensive review of each
category's advantages and limitations. The survey concludes by highlighting
some of the outstanding issues with unlearning techniques, along with some
feasible directions for new research opportunities.
Related papers
- Machine Unlearning for Traditional Models and Large Language Models: A Short Survey [11.539080008361662]
Machine unlearning aims to delete data and reduce its impact on models according to user requests.
This paper categorizes and investigates unlearning on both traditional models and Large Language Models (LLMs)
arXiv Detail & Related papers (2024-04-01T16:08:18Z) - A Survey on State-of-the-art Deep Learning Applications and Challenges [0.0]
Building a deep learning model is challenging due to the algorithm's complexity and the dynamic nature of real-world problems.
This study aims to comprehensively review the state-of-the-art deep learning models in computer vision, natural language processing, time series analysis and pervasive computing.
arXiv Detail & Related papers (2024-03-26T10:10:53Z) - A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning [58.107474025048866]
Forgetting refers to the loss or deterioration of previously acquired knowledge.
Forgetting is a prevalent phenomenon observed in various other research domains within deep learning.
arXiv Detail & Related papers (2023-07-16T16:27:58Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
We introduce a novel taxonomy that categorizes existing knowledge-enhanced methods into two primary categories and four subcategories.
We elucidate the current application domains and provide insight into promising prospects for future research.
arXiv Detail & Related papers (2023-02-04T04:54:30Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z) - Machine Learning for Massive Industrial Internet of Things [69.52379407906017]
Industrial Internet of Things (IIoT) revolutionizes the future manufacturing facilities by integrating the Internet of Things technologies into industrial settings.
With the deployment of massive IIoT devices, it is difficult for the wireless network to support the ubiquitous connections with diverse quality-of-service (QoS) requirements.
We first summarize the requirements of the typical massive non-critical and critical IIoT use cases. We then identify unique characteristics in the massive IIoT scenario, and the corresponding machine learning solutions with its limitations and potential research directions.
arXiv Detail & Related papers (2021-03-10T20:10:53Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - A Survey of Machine Learning Methods and Challenges for Windows Malware
Classification [43.4550536920809]
Survey aims to be useful both to cybersecurity practitioners who wish to learn more about how machine learning can be applied to the malware problem, and to give data scientists the necessary background into the challenges in this uniquely complicated space.
arXiv Detail & Related papers (2020-06-15T17:46:12Z) - A Survey of Knowledge Representation in Service Robotics [10.220366465518262]
We focus on knowledge representations and how knowledge is typically gathered, represented, and reproduced to solve problems.
In accordance with the definition of knowledge representations, we discuss the key distinction between such representations and useful learning models.
We discuss key principles that should be considered when designing an effective knowledge representation.
arXiv Detail & Related papers (2018-07-05T22:18:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.